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Three methods of estimating the scattering properties of the crust and upper mantle from observation
of close-range earthquakes are applied to the records of the Shipunskii frequency selective seismic
station located at the boundary of the main focal zone of Kamchatka. The methods employ visual
examination of records for direct estimation of diffusion coefficient & a model of low-multiplicity
scattering, and diffusion model. Three series of estimates for seven octave bands with center fre-
quencies of 0.39 to 25.0 Hz are in good agreement. The scattering length 1 = o ! varies from 300
km at 0.39 Hz to 70 km at 25.0 Hz. It is shown that a significant contribution to scattering is made by
multiple anisotropic scattering.

INTRODUCTION

Reliable estimates of the scattering of seismic energy in the crust and upper mantle are of
great interest both as geophysical characteristics of the earth medium and as initial data
in estimation of the ground motion produced by strong earthquakes. To derive estimates
of scattering one has to interpret the observational data using the theory of wave scatter-
ing. This involves some difficulties.

First, one has to separate the effects of scattering and intrinsic attenuation. Second,
with the existing simple theories it is difficult to take into account the effect of spatial,
primarily vertical, variations of scattering and attentuation. To overcome these difficulties
and to derive estimates which, though rough, are reliable, it is advisable to use several,
preferably independent, methods. An attempt is made in the present paper to apply this
approach to the data of near earthquakes in Kamchatka.

TECHNIQUE AND DERIVATION OF PRINCIPAL COMPUTATION FORMULAS

In this paper, interpretation of the observed wave pattern from a near earthquake is based
on the simple theory of wave scattering from an impulse-type isotropic point source in a
three-dimensional homogeneous attenuating earth medium with statistically uniform
distribution of isotropic scatterers (see [6, 9]). Conversion scattering (P -~ S, S — P)
and P-wave contribution to scattered wave amplitudes (coda waves) are neglected. In this
case, the energy flux (intensity) of a direct wave can be written as [4, 6,9]:
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where I4(r) is the radiation intensity within a supposed frequency band Af with center
frequency f; w is the source energy in the same frequency band; r is the distance from the
source to the station; 7 is the duration of the pulse in the source for an assumed square
pulse envelope (or an equivalent duration); Q = Qg (f) is the quality factor; ¢ = cg is the
velocity of shear waves; 1 = 1 (f) is the free path or length of scattering (diffusion coef-
ficient = 17'). We shall rewrite (1) as
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where tq = 1/c is the traveltime of the direct wave and t* =1/c is the time of scattering.
The intensity of a scattered wave Ig can be described by different equations depending
on various relationships between t{, t* and observation time t. Hereinafter, t is measured
from the time of pulse origin, and the condition of 7 < t{ is assumed. For tq <t <t*
the Born approximation (a single-scattering model) is valid [4, 6, 9]. It describes Ig as

w 2nft
Lt =—m &P (fﬂ Q > 3)

For t close to tq, Ig is 2—3 times greater than I; [4]. Practically, we can assume that Ig =
I, for t > (2-3) tq. Note that (3) is independent of tq.

In the opposite case of t > t*, the diffusion approximation is valid (see, for example,
[9]). In this case, the scattered wave intensity is given by
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Equatlon (4) becomes valid beginning from the times ¢, slightly greater than tq. For t
> td/t* the first term in the exponent is small, and equation (4) reduces to an asymptotic
form

14 () =

N L

which is again independent to td.

No adequate analytical description is available for the t ~ t* region. Kopnichev [3]
proposed an equation which structurally is a section of a u = t/t* series and which in
our notation takes the form (with an error corrected in the coefficient)
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Figure 1 shows the curves corresponding to equations (2) (for 7 = t*/20, that is fairly

common in our case), (3), (4) (for three cases tq/t* = 0.01, 1, and (10), (5), and (6)
(for u < 1). It is seen that for u < 0.1 equations (2) and (6) yield similar results. This
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FIGURE 1 Theoretical variation of direct and scattered wave intensity as function of time from
source origin. Attenuation is neglected. Ordinate is itensity. I and amplitude A in arbitrary units;
abscissa is dimensionless time u = t/t*, where t* = l/c = 1/oc. 1 direct wave for pulse duration
T = t¥/20; 2 — single-scattered wave in Born approximation at distance r = ctg = 0.01 ct* (appro-
ximately); 3 — asymptotic variation of envelope for t > 3tq for any tq in Born approximation; 4 —
diffusion approximation for tq = 0.01 t*; 5 — same for tg = t*; 6 — same for tq = 10 t*; 7 — Kip-
nichev’s model for t <t*; 8 — possible extrapolation of Kopnichev’s model.

can be explained by the fact that the second and third terms of the trinomial in (6) are
counterbalanced by —t/t* in the exponent. For u = 0.8—1, equation (6) predicts a flat
part of the curve; the conjugation of this flat part with the curve Iy, (5) (for u >2-3)
involves a physically unreasonable peak schematically shown in Figure 1. On the other
hand, the Ig, curve (5) intersects the curve of the Born approximation (2) for u =0.171,
and the broken line

([ L(); < 0171¢*
I (f) =
Tq(®); £>0.1714* %)

is close to the curve of (6) wherever the latter is physically plausible. For this reason we
used the broken line of (7) for the interpretation. Since the actual u values fell within
the 0.2—1 range, we used the second equation of (7) for I4, in all the cases.

A comment should be made concerning the above equations. In the case of near
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earthquake energy scattering, a model of scattering in a half-space should be more ade-
quate than infinite-space models. Analysis of this case shows, however, that if the half-
space boundary is assumed to be a mirror surface, the use of equations (3) and (5) does
not involve any appreciable errors.

Equation (7) describes an extreme theoretical variation (in the case of large t values)
of scattered wave intensity for any tq in a statistically homogeneous medium with con-
stant intrinsic attenuation. As evidenced by the observational data, this extreme variation
(a “coda-wave asymptote” in [7]), i.e., an extreme shape of the envelopes in the tail of
the near earthquake record at different distances from the source, is a common feature
of the wave pattern. The empirical dependence I (t), however, cannot be described by an
equation of the (7) type; it must be expressed by a more complex equation because
the condition of statistical homogeneity and constant attenuation is not satisfied. Con-
sequently, the use of the above theoretical models for the interpretation needs further
substantiation.

It is well known that in the earth scattering generally decreases with depth. Let us,
then, consider a simple heterogeneous mode! consisting of a scattering layer with t* =
tf having a thickness H < ct{ lying on a weakly scattering half space with t* = t¥. We
shall denote t = (Ht*/c)®*and assume the medium to be perfectly elastic. It is evident
that for t < tp the wave field observed at the earth’s surface will correspond to scatter-
ing in a half space with t¥. It is less evident that for t > tp the wave field will conform to
scattering in a half space with t¥. For intermediate t values the wave field will correspond
to scattering in an atrenuating half space with a characteristic “attenuation time” tQ =
Q/2nf in the order of th and an effective value of t* = t&. Fictitious attenuation arises
because of an essentially irrevocable energy loss by radiation into a weakly scattering
medium. Thus, some fictitious attenuation will be added to the layer’s attenuation when
it is estimated using the diffusion model in an attenuating half space.

Some conclusions concerning the interpretation follow from the above consideration.
First, one should try to estimate t* independently of Q. Second, for adequate inter-
pretation using the diffusion model in a homogeneous half space it is necessary that the
experimental data fit the model within a sufficiently broad range of t. Finally, it should
be expected that the Q values estimated by the half-space diffusion model will be some-
what underestimated, and the more narrow the t range, the greater the underestimation.
Generally speaking, an inverse, apparently unstable and ambiguous, problem of recon-
structing t* (h) and Q (h) from intensity variation I5 (t) can be formulated; investigation
of this possibility is a matter of the future.

Another factor complicating the real situation, as compared with the above-mentioned
model, is the fact that the hypothesis of isotropic scattering, on which the equations of
the Born and, to a lesser extent, diffusion approximations are based, does not hold in
the real earth. This is manifested, in particular, by the fact that on short-period records
of regional stations a direct wave, i.e., a pulse generated in the source, can be obser-
ved only at distances of not more than 10—20 km from the source. At greater distances
it becomes broader, and its duration does not represent that in the source. Isotropic
scattering does not predict broadening of the pulse. In this connection it is worth men-
tioning that one of the most common scatterers in the earth is a reflector, well known in
seismic exploration and in deep seismic sounding; scattering properties of this reflector
are highly anisotropic.

An attempt is made below to approximate the combination of isotropic and highly
anisotropic scattering. The total diffusion coefficient @, in this case, is a sum of isotropic
@ and anisotropic oy coefficients.
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We shall now introduce the scattering distances 1 = a™, 1 = ', 15 = ay !, the
times tf*=1jc and t} = la/c, and the densities of the scatterers nj and na. The integral
scattering cross-sections are

i=a i/f’li, (9)
Oa=0t,/ 1,

(10)
The differential cross-section of isotropic scattering is constant
0;(0) =0, /4n. (11)

where 0 is the scattering angle. For anisotropic scattering the scattering angle 6 is assumed
to be small; in this case, the small arc & on a unit sphere is a vector sum of two small
arcs, Ox and Oy, which are the angular ray deflections in two mutually perpendicular
directions. The random scattering angle is then given by

6= (0} + 63)%, (12)

where 0x and 0y are independent random quantities. Let 0x and Oy obey the same
normal distribution law with variance §2 (§ < 1):

P (8x,0) = (1/8Y/ 27) exp (— 65,4/28%). (13)

In this case, § has a Rayleigh distribution, and a differential anisotropic scattering cross-
section has the form

0,(0) = (0.0/2n86%) exp (—02/26%). (14)

We now proceed to consider multiple anisotropic scattering. By following the ray direc-
tion in the course of multiple scattering we can assume the scattering process to be
random wandering in a space of angles (over a single sphere). This process has been
considered in [8, p. 139], and we shall borrow the relevant results.
Let 8 be the total angle of the ray deflection for N scattering acts; the mean cos 6
is in our notation
cos § = N6,

(15)

For a small value of the exponent, equation (15) reduces to

52 = 2N&2, (16)

As N increases, cos 0 — 0, the radiation field becomes progressively isotropic. We then
select N 62 = 2 as a provisional critical value which corresponds roughly to 6 = 82°,
and refer to the respective time t, = 2t*/6? as the time of isotropization. For t > t,
the scattered field will differ little in character from the case of isotropic scattering at t*
= to,. On the other hand, for t < ty, when anisotropically scattered energy propagates
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along the initial ray, the main effect will be the broadening of a radiated pulse with the
energy being preserved at approximately the same level. Thus, we can assume that at
t <€ t, the energy of the observed pulse is close to the energy of a pulse in a medium free
of scattering. This is important for the interpretation because usually it is difficult to
observe a “‘pure” pulse from a source.

The above consideration applies to the anisotropic part of scattering. The isotropic
part for t < t%¥ merely entails the pulse amplitude decay. If the conditions of t > t,
and t > tj are satisfied at the same time, the effects of the isotropic and anisotropic parts
are indistinguishable, and the situation assumes the character of multiple isotropic scatter-
ing with some effective o and t} values:

U=+ (falty) o,

fe= (cag ™. a7

Some of the anistropic scattering parameters can be estimated from the broadening of
the pulse. Indeed, it can be assumed that with a §-shape source pulse the pulse duration
will be on the order of a difference between the traveltime along the straight ray in a
homogeneous medium and the traveltime along the “curved’ ray in a scattering medium.
According to [8], for N6? < 1 the mean square distance r? of the ray from the initial
point while the scattered wave travels the distance s = Nt} is given by

pm s (122

- 3 (18)
which gives s —r =~ N&s/6 = 128%/6t,c
and the pulse duration T~ 6L — o-.
(19)

1
The g parameter and t, = 3 q can be determined from observation. The value of t¥
cannot be determined directly, but assuming § from a permissible range (roughly 10°
< § < 30°) we can have an approximate t} estimate from

ta = 1,0%/2. (20)

The relative effect of multiple anisotropic scattering in total scattering can be estimated
by comparing the to and tg values determined from coda wave observation.

The list of possible departures of the real earth medium from the model of isotropic
scattering in a statistically homogeneous medium could be continued. We believe, how-
ever, that vertical heterogeneity and anisotropy are the most important.

METHOD OF INTERPRETATION
We have mentioned above that for the estimation of & (or 1 = a™, or t* =1/c) it is advis-

able to use methods that do not involve the simultaneous estimation of intrinsic attenua-
tion. For instance, it is convenient to use waves of two types, direct and scattered, at
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the same delay time At. The most approximate method we used is based on visual exa-
mination of seismograms and on estimating the possibility of identifying a direct (or
anisotropically scattered) wave. When these estimates of the quality of a “direct wave”
are arranged over the distance, we can find the critical time t at which the direct wave is
“lost in noise”. This time can be used as a direct estimate of t*.

The validity of this method can be substantiated by the following. Wave patterns
recorded from near earthquakes point to a great effect of anisotropic scattering because
a direct wave (a source pulse) cannot be visually identified even at the smallest distances.
If the isotropic constituent of scattering is neglected, the time, at which the visible pulse
of an anisotropically scattered wave is “lost”, will be slightly smaller than the time of
isotropization, which in this case is close to scattering time t*. Hence, this estimate is
reasonable.

Consider now the opposite case, where scattering is essentially istropic. Here, the
“pulse loss™ occurs at the time when the intensities of a direct and a scattered wave are
identical. But, as we have mentioned above, the pulse of a direct wave is broadened, and,
consequently, its actual rather than “focal” length should be used during the evaluation
of the direct wave intensity. At low frequencies the pulse is broadened by filtering
at the frequency-selective seismic station (FSSS) rather than by multiple anisotropic
scattering. The actual pulse widths are usually 7 =1.5-8c.

Assuming that the “pulse loss” occurs at some definite signal-to-noise ratio v ~ 1,
we obtain the equation from which the time of “loss” can be estimated

Tq() /s ()=, (21)

where Iq is derived from (2) and Ig from (7). {5 corresponds to t ~ tg, and in this case
equation (7) is, strictly speaking, inapplicable. For a rough estimation, however, its
application seems permissible. The fact is that at t ~ tq < t* equation (7) underestimates
and at t ~ tqg > t* overestimates Ig; but we deal with the boundary case of t ~tg ~ t*.
Solving equation (21) for Iy = I; (equation 7), we obtain ¥ ~ I for t* ~ t*, if we sub-
stitute the most common 7’ values and the t* estimates obtained below by different
means. This fact and the result obtained for the purely anisotropic case justify the pro-
posed rough approach. It should be mentioned that when using this approach one should
carefully avoid any preliminary selection of records.

The second method we used to estimate t* is based on the ratio of direct wave in-
tensity to that of a scattered wave (of low multiplicity) for different earthquakes. We
shall write equation (7) for one earthquake (index 1) and equation (2) for the other
(index 2) and take a ratio of the right-hand and left-hand sides assuming t to be identical.
Dividing the result by w,/w, we obtain the equation

B — AP :{(Q/t*)exp(z‘/t*); ©<<0.171
P00 ((4,836/6) (/) exp (t1); u> 0071

(22)

where 7e is the equivalent pulse duration. Given t and B,, we obtain an equation for t*
which can be solved, for instance, by the method of iteration. The choice of t is governed
by the following considerations. The t/t4(1) ratio should be maximum to permit the
application of the asymptotic equation; on the other hand, t must be minimum so that
the parameter u should not be greater (for u > 1 the estimation of Ig (2) is unstable).

We now proceed to B, estimation and begin it with a simplified case where Ig and Ig
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are fixed for one and the same earthquake (in this case B, = Ig/7eld). In this work we
used photopaper records; our initial data were the peak-to-peak direct wave amplitudes
2Ag with the respective visually estimated pulse lengths 7’ and the peak-to-peak coda
amplitudes 2A¢ at the reference time intervals At. We shall first consider the 7elg esti-
mate. By definition. 7elg = 7¢ cpA2 « M?, p is density, M is magnification, and A

ms
is the mean square amplitude of the record of the equivalent pulse. Since the multiplier
Cz— coM? is eliminated from (22) by division, it is sufficient to estimate the product 7
Arms.

The true “source” Te value is usually hard to determine, but what is important for us
is the pulse energy. It is, hence, convenient to adjust the observed results to the reference
level equal to the equivalent length of the filter response 7¢ u Af™. We then relate the
A;ms value to the observed Ag and 7° values

Ajncrease= R:k1k:ksk As, (23)
where k7, ky, ko, k3, k4 are the correction factors whose estimation is made by the
following procedure.

We shall first consider the correction for puise duration. The bandpass filter response
of the frequency-selective seismic station (FSSS) with center frequency fy, and frequency
band Af = 0.67fy, has an equivalent duration ¢ = 1.5f}f, . The observed visible length
of the filter response 7, (at the amplitude level of ~ 0.2) is close to 27f. The observed
length of the S-wave pulse is commonly greater than 7,, especially at high frequencies.
This could be due to the effect of the source pulse duration or to anisotropic scattering.
In the former case the length must be identical at different channels. Inasmuch as iden-
tity was observed in very rare cases, we attributed this effect to anisotropic scattering.
Since in the case of anisotropic scattering the energy is, on the average, preserved, the
observational data can be adjusted to the reference length; it is convenient to adjust
them to 7. The respective correction factor for Ag is

by = (v' /%)%, (24)

where 7o like 7°, is read off at the amplitude level of ~ 0.2. The adjusted amplitude is
given by

A9=k1As. (25)

To pass from Ay to Ay the following correction factors should be used.
1. Correction for the tramsition from the visible length of the filter response 7,
to 7f:

ky= (1'0/'54,)%2 = 141. 26)

2. Correction for the transition from the smooth envelope of the filter response to the
square envelope. We assume that the envelope is described by a sinusoid half-wave; the
correction, in this case, is

k.= 0.707.
* Q7)

Corrections k; and k, practically counterbalance each other.
3. Correction for the transition from the maximum extremum to the rms extremum.
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This correction is estimated as follows. The largest part of the transient pulse of the direct
wave, with a length of around 0.4 7, is regarded to Gaussian noise. Then the squared
extrema are exponentially distributed and (see [2])

n
k3t = 3 l/i=Inn- 0577,

=1

(28)

where the number of extrema n = 0.4 7fy. A is actually a half-sum of two maximum
extrema of n peaks and n troughs. This does not effect the correction but decreases the
scatter of estimates.

4. Correction for the transition from the rms extremum to the rms amplitude. As
in the case of a Gaussian process, we assume

ki = 0.5. (29)

The estimation of Iy = CAZ%,s with respect to A is somewhat simpler. Since 2A¢
is a peak-to-peak amplitude within a fixed window At, we have

A increase= ks (A7) kyAc (30)

where k3 and Kk} are similar to the above mentioned corrections k; and k4, and kj
=k, . Thus our simplified problem (for one earthquake) is solved.

Actually, we dealt with records of many earthquakes obtained at one station. It is,
then, desirable to find a method of averaging data from different earthquakes. For this
purpose, it is convenient to normalize A, and A¢ values by A values for some sufficient-
ly large reference time t = t; [7]. Since A2 (t;) is proportional to w, this approach agrees
perfectly with the initial equation (22). The normalized values

as=A, (1) [Ac(t,), (1)

ac=Ac(t)[Ac(ty) (32)

must on the average be independent of the choice of a particular earthquake. Since,
however, the actual a¢ and, especially, ag estimates exhibit a great scatter, it is convenient
to average the relationships @ (t) and 3¢ (t) for several earthquake, and to use the aver-
aged ag and G values to calculate B, for some fixed t value. .

In the 3 calculation, we could not always measure Ac (t;). In such cases, we per-
formed a normalization procedure using the explicit equation (see [7]).

as== (A, (£)[Ac (1)) ac (), (33)

where t is a different time which is convenient for measuring amplitude.

The ag calculation can be made only for some of the recorded earthquakes, namely,
those whose durations 7° can be measured with certainty. Hence, the average empirical
values are upward biased because the data corresponding to low values of a radiation
pattern and to the paths where scattering is essentially higher than the average are auto-
matically eliminated. To avoid this bias we used one more correction factor, k3 =0.8,in
all the calculations which involved ag.
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Since the k; value depends, though not greatly, on 7, in calculating B, we used a
median 7’ value which is equal to 7. We now can write the final formula

B, = ks (ac (H)/as ()% 0,67, G4

where

keis = ky (AD) /Ry (T) ks (33)

The third method we used to estimate t* was based on the diffusion model. In this
case, we could not avoid estimating Q. The general-procedure of the method is as follows.
The first step is to check if the empirical curves @ (t) can be adjusted by the equation
(derived as a consequence from (4), see {7,9]).

f(t) = constt**exp (— nifmt/Q). (36)

Q is estimated during the adjustment. The next step, as in the second method, is to divide
both sides of (7) by both sides of (2) for different t values which can be given as tq and
tg, respectively. We obtain.

Wty 4836Rgexp (Fg — 15 )2n],/Q+1a/tY)
IR () G @37)

With the known values of B, td, ts, fm, and Q we obtain the equation from which t*
can be estimated. B, is found from the equation which is similar to the one we used to
estimate B,

By=(kcs)*(as( tq)/ac(t ¢ ))*0.67 fn. (38)

Here the minimum possible tg value is selected, and tg is taken from the end of the t
range where the ag (t) adjustment by the (36) function is feasible.

We shall now consider the procedure of estimating parameter q (equation (19)) which
determines are characteristics of anisotropic scattering. To apply the approach evolved
above to the observational data, we should take into account the duration of the response
pulse of the FSSS channel. The observed pulse duration can be, in this case, written in
the form

T = (5 + (g%, (39)

where 7, is the FSSS response pulse duration. This equation is exact if the rms durations
are assumed for 7, 7o and qt*:

v= (g2t £dt g @2 (f) dt, (40)

where ¢? (t) is the square envelope. It would be advisable to consider a similar correction
to allow for the pulse duration in the source but it is small enough to be neglected. Equa-
tion (39) can be directly adjusted to the observational data on 7’.
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OBSERVED DATA AND SCATTERING ESTIMATES

In this work we employed several dozen records of the Shipunsky multichannel fre-
quency-selective seismic station, located on the east coast of Kamchatka (tip of Cape
Shipunsky, 100 km east of Petropavlovsk-Kamchatskii). The station, designed by K. K.
Zapol’skil, was operated from 1967 to 1969 by S. A. Boldyrev [1]. The station’s seven
octave channels recorded vertical ground motion at center frequencies fi, = 0.39, 0.79,
1.51,3.0,5.5,11.1, and 25.0 Hz in the equivalent band of around 0.67 fy,. The station
located on hard rock recorded near shallow earthquakes with an S-P time interval of 5—
40 s; it was virtually unable to record earthquakes with smaller S—P intervals. It was
assumed in the calculation that ¢ = ¢g = 3.5 km/s (cp/cg)? = 3.0.

First we examined the unpreselected records for the “quality” of the S-wave pulse.
We limited our sample of records to 35 records which were known with certainty not to
have been preselected. We used three levels of visual classification of a pulse quality,
“explicit”, “poor”, and “unidentifiable”, that were marked by number 1, 2, and 3,
respectively. The average mark was calculated for each S—P interval out of the set of
5-10, 10-20, 2040, and 40—80 s intervals, and the S—P value corresponding to the
average mark of 2.5 was adopted as a value characterizing the length of scattering (see
Figure 2). The t* values estimated by the first (visual) method are listed in Tabie 1.

TABLE I
Estimation of t* by First (Visual) Method

Center frequency fyy,, Hz

Parameter

0.39 0.74 1.51 2.96 5.5 11.1 25.0
(8-Pias,s 34 23 23 23 17 7 5)
t*, s 80 54 54 54 40 17 12)

Then, using a few dozen earthquakes, we plotted the asymptotic coda-wave envelopes
3¢ (t) = A¢ (t)/Ac (100) normalized by their own level at t = 100s. According to [7],
the “onset” of the coda-wave record was selected at t = 1.5-2.5 tq ( a smaller t was
used for high-frequency channels). Like in the other regions of the USSR [7], we found
the coda-wave envelopes to be stable for different event locations. The method of plot-
ting the asymptote was borrowed from [7] with some modification which we had pro-
posed earlier [2]. The coda-wave record was broken into intervals of equal duration At
with the interval boundaries chosen at tj = iAt, i = 1,2, ... (as in the previous case, t was
measured from the event origin). The At values are listed in Table 3. The peak to peak
coda amplitude 2A¢ (i) was measured at each interval, and the log A¢ (i) sets for different
earthquakes were plotted. Displacing separate curves along the vertical, we plotted the
resulting curve ag (t).

For Q estimation we adjusted the a; (t) curves by function (36) in the left-hand initial
part of the graph (Figure 3). The results are given in Table II, where line t, — ty, indicates
the interval over which the adjustment is virtually perfect, with a discrepancy of less
than 0.05 log units. For t > tp, the empirical curves depart smoothly upwards from the
theoretical ones.

To plot the ag (t) relationship we selected records with easily recognizable S-wave
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\\f= 0.39 Hz
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FIGURE 2 Variation of medium-quality direct wave in marks as function of S-P interval (see
text) for six FSSS channels. Vertical mark shows time of pulse loss in noise.

FIGURE 3 Empirical asymptotic envelopes of coda-wave amplitudes ac () for seven FSSS chan-
nels and their approximation by theoretical curves for diffusion model. Center filter frequencies are
indicated at curves. Curves are arbitrarily shifted along vertical; points indicate time t = tQ.

pulses. For these pulses we measured peak-to-peak amplitudes 2Ag and visually read off
duration 7 at the 0.1--0.3 amplitude level. For each record we calculated the adjusted
amplitude Ao and normalized it by A¢ (100) of the same record following the above-
mentioned procedure. The ag values are shown in Figure 4 as a function of tq. The
scatter is great, and the slope of the averaging curves can hardly be estimated. In order
to evaluate the level of the averaging curves, we plotted theoretical curves of the form

a (t) = const. t™! exp (—nfmt/Q—t/t*)
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(41

The Q values were chosen from Table II, and the results of the preliminary calculation,
close to the final ones, were adopted as t* values. The estimation of the levels of the
curves is not affected by large variations of t* making this procedure permissible. The
levels of the curves were chosen visually (see Figure 2). The levels of the selected curves
were used asag (t) in further calculation.

The choice of t = t, in the second procedure was constrained to a narrow range where
the relationships ac (t) and ag (t) overlapped. We selected t, = 25 s for three low-fre-
quency channels and t, = 20 s for high-frequency channels. In the case of the a; data,
parameter t/tq was 2.0 and 1.6, respectively. Parameter B was calculated as above; the
results are listed in Table III. The u = t,/t* values are given in the last line of the table.
It is seen that u > 0.171 everywhere and, hence, the second equation of (22) was used in
all cases.

In the calcuation by the third method, the minimum value, 14 s, was taken for the
direct-wave time t3 ¢, and the value close to tp from Table II for the scattered-wave
time 1t3 . The results calculated by this method are listed in Table IV.

In, order to obtain the characteristics of anisotropic scattering, we adjusted the 7
(S—P) data for three FSSS channels (1.51, 2.96, and 5.5 Hz). Figure 5 shows the initial
data and the averaging curves

TABLE II
Estimation of QS from Coda Waves by Diffusion Model

Center frequency fy,, Hz

Parameter
0.39 - 0.74 1.51 2.96 5.5 11.1 25.0
ta—tp 30-500 25-500 25-130 25-180 20-80 20-80 20-180
Qs 298 367 227 307 414 722 1445
TABLE III
Estimation of t* by Second Method
Center frequency fy,, Hz
Parameter
0.39 0.74 1.51 2.96 5.5 11.1 25.0
Tm, s 8 4 2.9 2.5 2.55 2.3 2.2
At,s 10 10 10 5 5 5 2.5
log Kg/C -0.04 -0.10 -0.10 -0.03 +0.01 —0.02  +0.04
t2, 8 25 25 25 20 20 20 20
log ag 0.95 0.70 141 2.28 2.71 2.87 3.18
logac 0.5 0.64 1.13 1.58 1.94 2.10 2.39
t*, s 89 33 37 52 40 30 24

u 0.26 0.60 0.58 0.36 0.48 0.78 1.05
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FIGURE 4 Empirical ag (t) values for seven FSSS channels and averaging curves (see text).

=@+ (S —P"~ “2)

(see equation 39), where 7’ and 7, are the length of the observed pulse at the output of
the FSSS channel and the duration of the FSSS response pulse at the amplitude level of
0.2; p is the adjustment parameter; 7o = 2/0.67 fiy.

The quality of adjustment was, in our opinion, satisfactory; the scatter was great, but
this should probably have been expected. The best results were obtained at the 5.5 Hz
channel, where the theoretical mean square relationship can be considered to be con-
firmed. The values of q = 0.178 p and the calculated to values are given in Table V.

For a rough estimation the scattering chart width & was assumed to be 20°; the re-
spective t* value is also given in Table V. To Judge the validity of these estlmates we
divided the t* values by the wave period T = {1 ;the result is a dimensionless “scatter-
ing number” Ay, equal to the number of wave mlength X over the scattering (free path)
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FIGURE 5  Variation of visual duration of “direct” S-wave t three FSSS channels with distance.
Curves correspond to equation (43); parameter p was adjusted.

TABLE IV

Estimation of t* by Third Method

Center frequency fyy,, Hz

Parameter
0.39 0.74 1.51 2.96 5.5 11.1 25.0
13,8, § 500 500 100 140 50 50 100
log ag 1.24 1.07 1.82 2.53 2.94 3.22 3.57
logac -1.39 -1.67 0 -0.67 1.03 1.19 0
t¥, s 129 39 41 59 46 34 23
u 5.2 12.1 2.4 3.2 1.2 1.9 5.3
TABLE V
Estimates of Anisotropic Scattering
Center frequency fy,, Hz
Parameter
1.51 2.96 5.5

q,s ! 0.0065 0.0058 0.0070

to, S 51 57 47

t,s 3.1 34 2.9

Ma 4.7 10.3 16
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TABLE VI

Summary Estimates

Center frequency fy,, Hz

Parameter

0.39 0.74 1.51 2.96 5.5 11.1 25.0
tiy s 97 41 43 55 42 26 19
tQ.s 122 79 24 16.6 12.0 104 9.2
1, km 339 145 151 192 147 91 67
A 38 31 65 162 230 290 480

length 1. The A, values are also given in Table V; they look physically reasonable. Obvi-
ously, these values should be regarded as tentative, but they can be used for general
orientation.

Finally, the average t* values estimated by the three methods are listed in Table VI.
They were obtained by the formal geometrical averaging of the data given in Tables I,
III, and IV.

DISCUSSION OF THE RESULTS

The disagreement between the t* values estimated by method 1 and methods 2 and 3 is
not great, being two-fold only at the 25 Hz channel, for which the results are in general
relatively unreliable. As a whole, the agreement can be considered good.

The proximity of the estimates obtained from methods 2 and 3 is not representative.
As we have mentioned above, almost in all cases we used the second equation of (7)
which matches (11) for tq = ts. The question, therefore, arises as to what extent the t*
estimates are independent in the case where Q values are obtained by adjustment of the
same equations. We have not found a good solution to this problem. We should, obvious-
ly, consider the t* estimates by methods 2 and 3 as notably correlated. On the other
hand, the fact that the coda asymptote can be well adjusted by the curve of (36) for u =
0.2—3 proves the validity of our initial model (7); its theoretical substantiation is not
available for this interval.

The comparison of the t* and tQ = (27fm/ Q)™! values allowed us to estimate separ-
ately the attenuation and scattering effects beneath Kamchatka. We found that the
two effects are comparable.

Table VI includes the values of 1 = @™ = ct* and the dimentionless “scattering num-
ber” A = 1/X = t*fj,. Like the quality factor Q, the A value characterizes the intensity
of scattering as a process and can be useful in comparing the results obtained in different
frequency bands. (A similar quantity “transparency”, equal to A/27 in our notation,
was proposed by A. B. Nikolayev [5]).

It should be noted that for the model with a selfsimilar spectrum of heterogeneities
(N (L) ~ L3, 8 (k) ~ k3, where L is the size of an individual heterogeneity and k is the
wavenumber) the scattering number must be constant for any frequency f, and departures
from this rule indicate that the spectrum of heterogeneities ceases to be self-similar. We
see that A is relatively stable in the range of 0.3—1 Hz and increases with frequency by
about one order of magnitude in the range of 1-30 Hz. This fact can be compared with
the similar behavior of the seismic radiation spectrum from a strong earthquake. For the
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considered frequencies this radiation is generated by near-surface heterogeneities of a
seismogenic fault and branching ruptures, and if the spectrum of these heterogeneities
is selfsimilar (N (L) ~ L™, S (k) ~ k?), the acceleration spectrum should be constant
like A. The behavior of the spectra of real accelerograms is actually different; they are
roughly flat in the range of 0.5—3 Hz and have an explicit decay at 3—30 Hz which can-
not be explained by anelastic attenuation. This analogy in the behaviors of the spectra
of heterogeneities in the earth revealed by two different types of initial data seems
remarkable.

The study of anisotropic scattering seems to corroborate our initial hypothesis of a
strong scattering effect at reflectors. The estimates of the isotropization time t, are
close to the t* values for the same channels. Since the t* and, especially, t, data are of
low accuracy, we cannot say with certainty that the effect of isotropic scattering proper
is insignificant, but we can definitely state that multiple anisotropic scattering makes a
significant contribution to the observed wave field.

It should be noted that our statistical method of describing the variation in the shape
of a short-period seismic pulse with distance is complementary to the description of this
phenomenon by ray-tracing in a multilayered earth. This description seems to be advan-
tageous when applied to laterally heterogeneous “block-type” media.

Comparison of our results with those from other regions of the USSR would be of
great interest, but owing to the differences in the technique such comparison is rea-
sonable only in one case. Kopnichev [3] estimated o and 1 for the crust in the northern
part of the Garm region in Tajikistan using a similar technique. His 1 estimates for f=5
and 10 Hz were 100 and 50 km, which differ little from the estimates we obtained for
the crust and upper mantle under Kamchatka (147 and 91 km, respectively).

CONCLUSION

1. 1t is suggested that the diffusion approximation formula be applied to the intensity
of scattered waves in the region intermediate between the Born and diffusion cases.

2. Three methods of estimating the scattering characteristics of the crust and upper
mantle were applied beneath Kamchatka in the frequency band of 0.3—30 Hz. The
estimates obtained are in good agreement.

3. Anisotropic scattering characteristics are estimated; it is shown that multiple
anisotropic scattering is an important and, possibly, the determining factor in the general
pattern of diffusion.
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