Three-corner representation of earthquake source spectra at Kamchatka

A.A Gusev^{1,2}, A.A.Skorkina² and E.M.Guseva²

¹Institute of Volcanology and Seismology, FED, Russian Ac. Sci. ²Kamchatka Branch, Geophysical Service, Russian Ac. Sci.

Petropavlovsk-Kamchatsky, RUSSIA

Starting point: " ω^{-2} " or "omega-square" model

for the shape of far-field earthquake source spectrum

Single corner: Brune 1970 =1 Double corner: Aki 1967, Brune 1970 : <1

Single-corner displacement *u*(*f*) spectrum: the simpler standard variant after (Brune 1970); ε=1 single corner frequency f_c

Two-corner *u*(*f*) spectrum, original by Aki 1967, also advanced, non-standard variant after (Brune 1970); ε<1 two corner frequencies f_{c1} , f_{c2}

Key points: 1. flat (f⁰) source acceleration spectrum 2. f_{c2} is commonly seen in observed spectra

Outline of the study

- Reduce observed S-wave spectra to the source by means of a *reliable* attenuation model (Q(f), κ₀) (*cross-checked* by 2 techniques: *spectral* and multi-band *amplitude decay*)
- 2. From corrected spectra, extract *f*c1 *f*c2 *f*c3
- 3. Cross-check the existence of fc3
- 4. Discuss scaling and other properties of spectra

Data set used

7 rock-ground stations

accelerometers **CMG5T** and **CMG5TD** Digitization rate: 100 sps Work bandwidth: **0.2–35 Hz**

Magnitude *Mw** range: **3.5–6.5** Hypo distance range: **55–270 km** Depth range: **3–170 км**

S waves

372 earthquakes (2011–2014): 1 252 source spectra

and more

125°E 150°E 175°E 160°W

Loss models by two techniques: agree

Technique 1: spectral

assume spectrum to be ω^{-2} between fc2 and fc3

observe how spectral shape deforms with distance; derive $Q(f),\kappa_0$

pilfalls: local station conditions; fc3 pick needed

Technique 2: multiband amplitude decay, with coda normalization

assume geometric spreading known observe how band amplitude decays with distance; derive Q(f)

pilfalls: geometric spreading hypothesized; κ_0 cannot be estimated

Example of interactive processing mode

spectral smoothing window used: 0.15 log units (1/2 octave)

More example cases: f_{c3} may be observable or unobservable/absent

Pair correlation analysis: f_{ci}(sta1) vs f_{ci}(sta2)

Existence of f_{c3}

is thought to be proven

fc1 – fc2 – fc3 trends side by side, PET data 1993-2005

The slope of the trend of high-frequency source spectral level vs. M0 shows prominent deviation from one expected for the case of similarity

EMPIRICAL SCALING LAW OF SOURCE SPECTRA, WITH UNCERTAINTY for moderate earthquakes of Avachinsky Gulf, Kamchatka

19 19 20 18 log M0dotdotdot, N*m/s² 19 18 log M0dotdot, N*m/s log M0dot, N*m 17 18 17 16 17 16 15 16 14 15 15 13 0.5 0.5 -0.5 -0.5 -0.5 0.5 0 1 0 0 1 1 -1 -1 -1 log f, Hz log f, Hz log f, Hz

at Mw= 3.50 4.50 5.50 6.50

Multiband spectra and automatic picking of M0 and fci

Sequence of processing:

- 1. Cut out S & coda (C) & noise; BANDFILTER
- 2. Find energy of S; rms amplitude of C, reduce to reference distance/time
- 3. Convert reduced band amplitudes into source spectrum (S-based + C-based)
- 4. Pick M0/Mw, fc1, fc2, fc3,

Supporting info (per band):

1. Standard coda shapes Standard amplitude decay functions

Q(f)

2.

- 3. Spectral station corrections
- 4. Reference station impedance correction (for effects of layered medium)

Example source spectra and auto picked M0 and fci (1)

Example source spectra and auto picked M0 and fci (2)

flat vs. growing LF spectrum

coda-derived vs. S-wave-derived spectrum

Hand-picked (-----) vs. auto-picked (•) f_{ci} (procedures conceptually non-identical!)

Despite systematic shifts, the lack of similarity is confirmed for fc2, fc3:

fc1 appx $\propto M_0^{1/3}$

whereas fc2, and, probably, fc3 do not

Slow f_{c2} vs. M_0 trend (exponent<1/3), as compared to that of f_{c1} (exponent \approx 1/3),, is thought to be proven

Conclusions

- 1. Among hundreds of attenuation-corrected spectra of *M*=3.5-6 earthquakes, a large fraction (80%+) shows the source-controlled f_{max} , i.e. the third corner frequency f_{c3} .
- 2. For many spectra, the second corner frequency f_{c2} can be confidently identified.
- 3. Both for fc2 and fc3, scaling does not follow the standard $f_{ci} \propto M_0^{1/3}$ trend characteristic for the case of similarity.

Possible physics that underlies trends of f_{c2}, f_{c3}

- f_{c2} is probably related to slip pulse width; the trend $f_{c2} \propto f_{c1}^{0.5-0.6}$ suggests that pulse width grows by some mechanism akin to random walk
- f_{c3} is probably related to the lower limit of the size of fault surface heterogeneity, (or else to cohesion zone width, or both) (compare Aki (1983)), ; the trend $f_{c3} \propto f_{c1}^{0.2 \cdot 0.3}$ suggests that these parameters increase with source size, however very slowly. Probably this trend reflect variations in fault surface maturity: the greater is distance the fault walls have slipped one over another, the larger is accumulated wear and the lower is the upper cutoff of heterogeneity spectrum. (compare Gusev 1990; Matsu'ura 1990,1992).

Thank you

for attention