Splitting f_{max} : separating site-controlled and source-controlled contributions into the upper cutoff of acceleration spectrum of a local earthquake

A.A Gusev^{1,2}, E.M.Guseva²

Petropavlovsk-Kamchatsky, RUSSIA

¹Institute of Volcanology and Seismology, FED, Russian Ac. Sci.

² Kamchatka Branch, Geophysical Service, Russian Ac. Sci.

1

Starting point: " ω^{-2} " or "omega-square" model

for the shape of far-field earthquake source spectrum

Single corner Aki 1967, Brune 1970

Double corner, Brune 1970 : $\varepsilon < 1$

Single-corner displacement u(f)spectrum after Aki(1967), also the simpler, standard variant after (Brune 1970); ϵ =1 single corner frequency f_c

Two-corner u(f) spectrum, advanced, non-standard variant after (Brune 1970) ; ϵ <1 two corner frequencies f_{c1} , f_{c2}

Key points:
1. flat (f⁰) source acceleration spectrum
2. f_{c2} is commonly seen in observed spectra IUGG Prague 2015 "Source-controlled f_{max} ", or 3rd corner frequency, f_{c3} : does it exist? how it scales?

HISTORY

Hanks (1982) emphasized the " f_{max} " phenomenon: a(f) shows HF cutoff.

Papageorgiou and Aki(1983) and Gusev (1983) ascribed it to source; Aki (1988) noticed f_{max} vs M₀ trend with unusual scaling that might support this idea

- Hough and Anderson (1984) have shown convincingly that site-related loss controls f_{max}
- Still, accumulated evidence suggests that f_{max} is a complex feature; it incorporates **both site**-controlled and **source**-controlled components

Outline of the study

- 1. Compile a preliminary attenuation model $(Q(f), \kappa_0)$
- 2. (a) Use it to correct observed spectra for propagation loss (b) From corrected spectra, extract f_{c3} and also f_{c2}
- 3. Using the observed spectra within the limited $[f_{c2}, f_{c3}]$ frequency range, adjust the attenuation model
- 4. Repeat steps 2 an 3 until convergence
- 5. Discuss the obtained f_{c3} data set

Data set used

Compilation of the initial loss model on the basis of earlier results

Main sources used in compilation:

in the 1-6 Hz band from (Abubakirov 2005) who used coda-normalized spectral levels of band-filtered data

in the 5-25 Hz band based on (Gusev Guseva 2011) who analyzed kappa values;

accepted trend at r=100 km: $Q_{S}(f)=165 f^{0.42}$

also κ_0 =0.016 s

and slow decay of Q_{S}^{-1} vs. r

Example of processing in a case when each of f_{c1} , f_{c2} and f_{c3} is observable

More example cases: f_{c3} may be observable or unobservable/absent

Here is why f_{c3} is difficult to notice when working in the log-linear scale

Finding new adjusted S-wave attenuation model. 1. Setting the model

where $f_0 = 1$ Hz, $r_0 = 100$ km, c=3.8km/c;

and unknowns in inversion are: κ_0 , Q_0 , γ , q

Finding new adjusted S-wave attenuation model. 2. Inversion

Parameters of obserations used in inversion are spectral amplitudes A_1 and A_2 at the ends of the $f_1 - f_2$ spectrum segment (assumed to be flat in the true source spectrum) the condition of minimum width: $\Delta f = f_1 - f_2 > 2$ Hz makes a system of N=384 equations; using weight= $1/\Delta f$

Denote
$$\kappa_0$$
, Q_0^{-1} , γ and q as $x_i = \{x_1, x_2, x_3, x_4\}; \quad y_j = \log_e A_2 / A_1$
Obtain the system of N equations

$$y_j = F_j (x_i) + \varepsilon_j$$

where

$$F_{j}(x_{i}) = -\pi Q_{0}^{-1} \left(f_{2}^{1-\gamma} - f_{1}^{1-\gamma} \right) \left(1 + q \frac{r_{j} - 100}{100} \right) \frac{r_{j}}{c} - \pi \kappa_{0} \left(f_{2} - f_{1} \right)$$

Finding new adjusted S-wave attenuation model. 3. Result

Nonlinear inversion procedure: Nelder-Mead (1964) simplex method

Error bounds: determined using "delete-d jackknife method" Inverted 2014 (1st iteration): $Q_S(f) = (140 \pm 33) f^{0.54 \pm 0.08}$ $\kappa_0 = 0.027 \pm 0.07$ sInverted 2015 (2nd iteration): $Q_S(f) = 164 f^{0.59}$ $\kappa_0 = 0.034$

Residuals of $\delta \log A = log(A_2/A_1)$ fitted by the inverted attenuation model: histogram and plots of $\delta \log A$ against f_{top} , r, depth, and M_L

$f_{c3}(M_0)$: dlog f_{c3} /dlog $M_0 = -0.07 \pm 0.011$

All three trends side by side: see how scaling varies

Trend of f_{c3} vs. M_w : new data compared to compilation-2010

$$f_{c3}(H)$$

Possible physics that underlies the existence of f_{c3} and the trend of f_{c3} vs. M_0

Formation of f_{c3} can be attributed to the summary effect of the following factors:

(1) lower (or high-wavelength) limit of the size

of fault surface heterogeneity [Gusev 1990]

(2) finite fault zone thickness (gauge layer etc.)[Papageorgiou&Aki 1983]

(3) finite cohesive zone width [Campillo 1983]

The trend $f_{c3} \propto f_{c1}^{0.2-0.3}$ or $f_{c3} \propto M_0^{\approx -0.1}$ suggests that f_{c3} slowly decreases with source size

An underlying *cause* of such a trend may be *variations of maturity of fault* surface :

the greater *distance* fault walls have slipped, the larger is their *wear*, and:
(1) the lower is the upper cutoff of heterogeneity spectrum [by abrasion]
(2) the wider/thicker is weak fault zone [by wear product accumulation]
[Gusev 1990; Matsu'ura 1990,1992].

Conclusions

- 1. Systematic separation of source-controlled and attenuationcontrolled constituents of f_{max} is undertaken.
- 2. To enable this kind of analysis, an attenuation model for the lithosphere around PET station was guessed and then verified in iterative mode using spectral inversion.
- 3. Among \approx 500 attenuation-corrected spectra of *M*=4-6 earthquakes, a large fraction shows source-controlled f_{max} , i.e. the third corner frequency f_{c3} . However, for \approx 25% spectra, the classical ω^{-2} model is valid.
- 4. The values of f_{c3} are in the range 3-20 Hz; they slowly decay with magnitude. The distribution of (f_{c3} , M) pairs agrees with earlier work.

thank you for attention

Step 4. $f_{c1}(M)$: $dlgf_{c1}/dlgM_0 \approx -1/3$

common, regular trend; in agreement with the similarity concept

$f_{c2}(M)$: dlgf_{c2}/dlgM₀ \approx 0.15-0.18 [±0.011] \ll 1/3 similarity is definitely violated;

$f_{c3}(M): dlgf_{c1}/dlgM_0 \approx -0.08 \pm 0.013$

no similarity present

Two ways of checking the similarity assumption make different results

$$\sigma_a = \frac{E_s}{M_0} \propto \frac{v_{\max}^2(f)(f_{c2} - f_{c1})}{d(f)|_{f=0}}$$

Stress drop $\Delta \sigma$ vs. *M*: approximate similarity

 $\Delta \sigma \approx \frac{M_0}{R^3} \propto \cdot f_{c1}^3 \cdot d(f)|_{f=0}$

$$f_{c1}$$
 vs. M

$LV = \log f_{c2} - \log f_{c1}$: log-width of velocity spectrum V(f) vs. M (similarity would result in M-independent LV)

Variation of LV with M causes M-dependence of σ_a at a fixed $\Delta\sigma$

Possible physics that underlies trends of f_{c2}, f_{c3}

- f_{c2} is probably related to slip pulse width; the trend $f_{c2} \propto f_{c1}^{0.5-0.6}$ suggests that pulse width grows by some mechanism akin to random walk
- f_{c3} is probably related to the lower limit of the size of fault surface heterogeneity, (or else to cohesion zone width, or both) (compare Aki (1983)), ; the trend $f_{c3} \propto f_{c1}^{0.2-0.3}$ suggests that these parameters increase with source size, however very slowly. Probably this trend reflect variations in fault surface maturity: the greater slipped distance, the larger is accumulated wear and the lower is upper cutoff of heterogeneity spectrum. (compare Gusev 1990; Matsu'ura 1990,1992).