A.A.Gusev

Current research on empirical trends and models of earthquake source scaling

Petropavlovsk-Kamchatsky, RUSSIA

¹Institute of Volcanology and Seismology, FED, Russian Ac. Sci.

² Kamchatka Branch, Geophysical Service, Russian Ac. Sci.

PART 1

Splitting f_{max} : separating site-controlled and source-controlled contributions into the upper cutoff of acceleration spectrum of a local earthquake

(A.A Gusev, E.M.Guseva 2015).

Empirical scaling laws for FSA, with f_{c2} feature

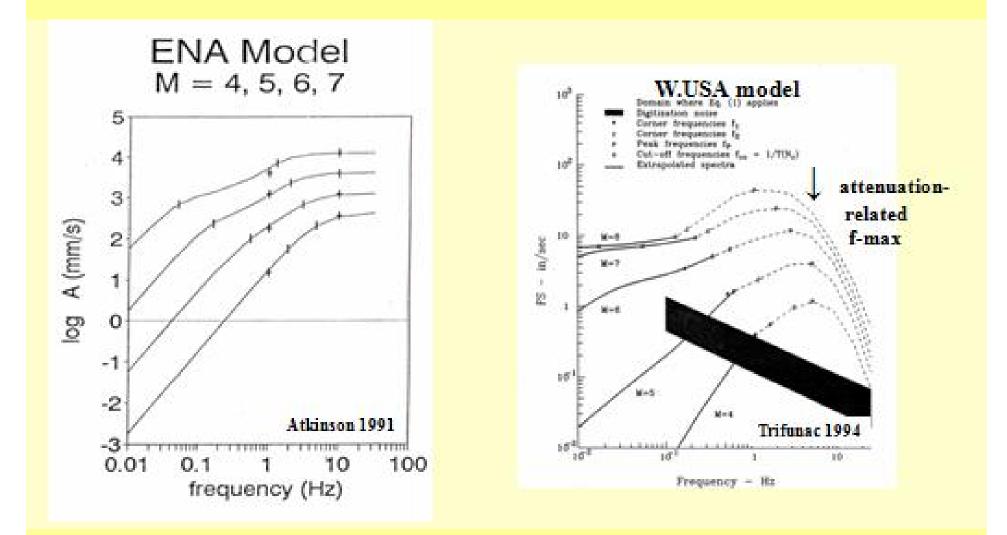
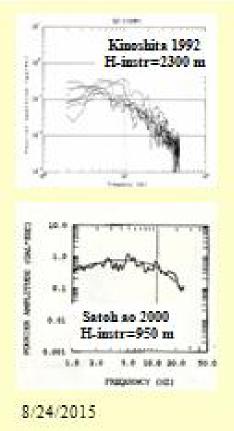


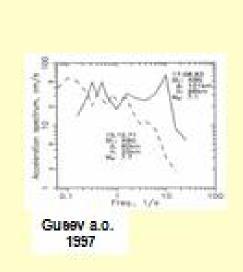
Illustration of features of observed acceleration spectra Source-related *f*-max: examples

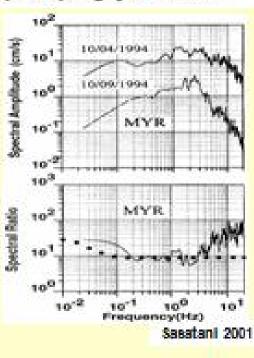
Low to moderate magnitudes Instruments in deep boreholes, eliminated attenuation-related f_{max} Found, typically: source-related f_{max} between 10 and 25 Hz,



Magnitudes 7-8

Pairs of earthquakes recorded at the same station One of the two events have unusually low sourcerelated $f_{max} \approx 3 \text{ Hz}$ Attenuation-related f_{max} is present as usual Can be eliminated by analyzing spectral ratio





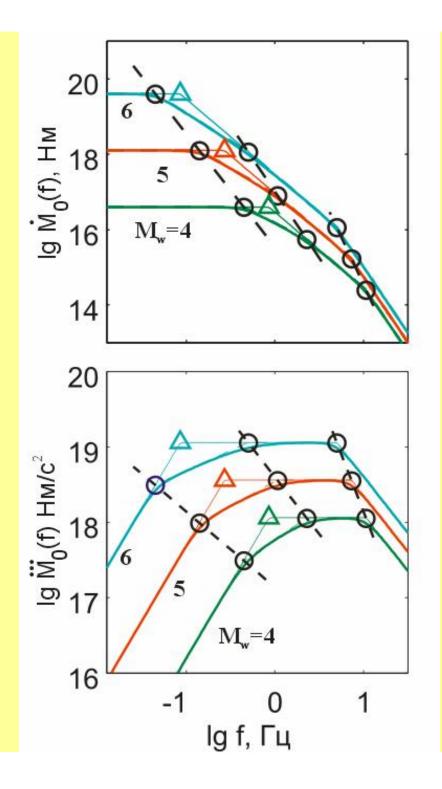
7thACES WS - Oct 2010

61

Schematic of spectral scaling

with trends of fc1, fc2 and fc3

Note fc0 (△): standard parameter when data are analysed based on Brune 1970 spectral nodel.



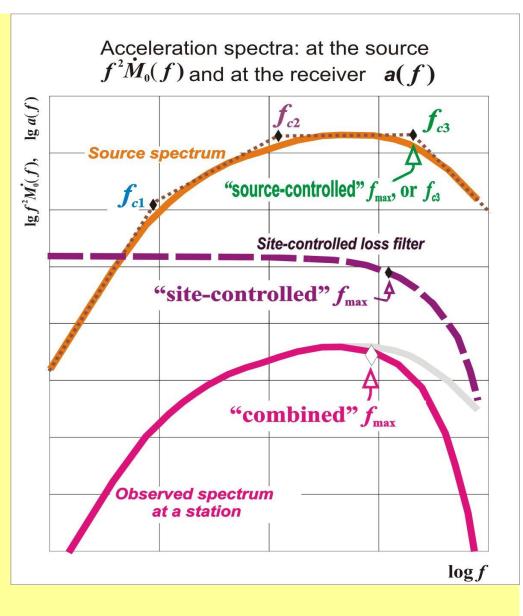
"Source-controlled f_{max} ", or 3rd corner frequency, f_{c3} : does it exist? how it scales?

HISTORY

Hanks (1982) emphasized the " f_{max} " phenomenon: a(f) shows HF cutoff.

Papageorgiou and Aki(1983) and Gusev (1983) ascribed it to source; Aki (1988) noticed f_{max} vs M₀ trend with unusual scaling that might support this idea

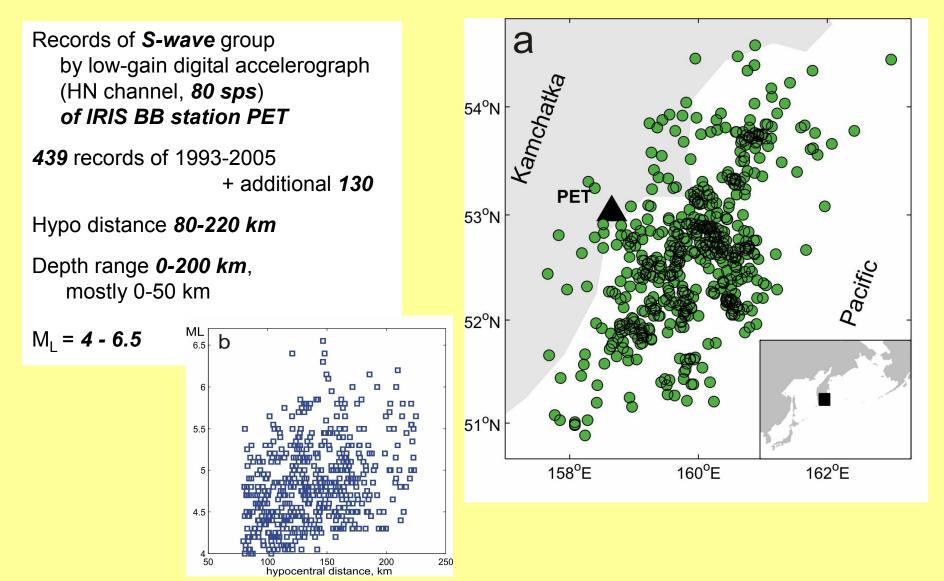
- Hough and Anderson (1984) have shown convincingly that site-related loss controls f_{max}
- Still, accumulated evidence suggests that f_{max} is a complex feature; it incorporates **both site**-controlled and **source**-controlled components



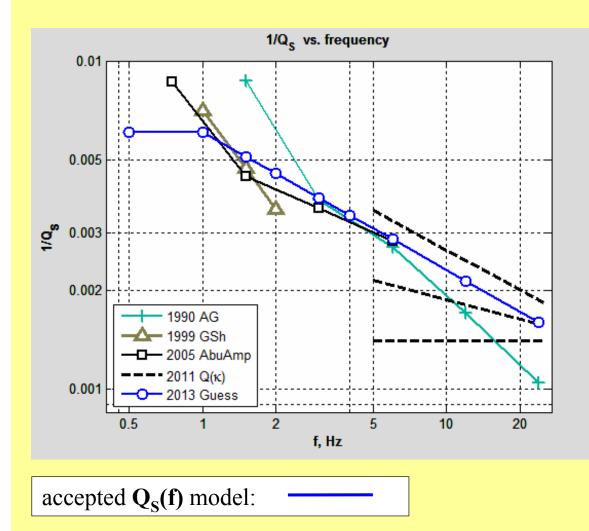
Outline of the study

- 1. Compile a preliminary attenuation model ($Q(f), \kappa_0$)
- 2. (a) Use it to correct observed spectra for propagation loss (b) From corrected spectra, extract f_{c3} and also f_{c2}
- 3. Using the observed spectra within the limited $[f_{c2}, f_{c3}]$ frequency range, adjust the attenuation model
- 4. Repeat steps 2 an 3 until convergence
- 5. Discuss the obtained f_{c3} data set

Data set used



Compilation of the initial loss model on the basis of earlier results



Main sources used in compilation:

in the 1-6 Hz band from (Abubakirov 2005) who used coda-normalized spectral levels of band-filtered data

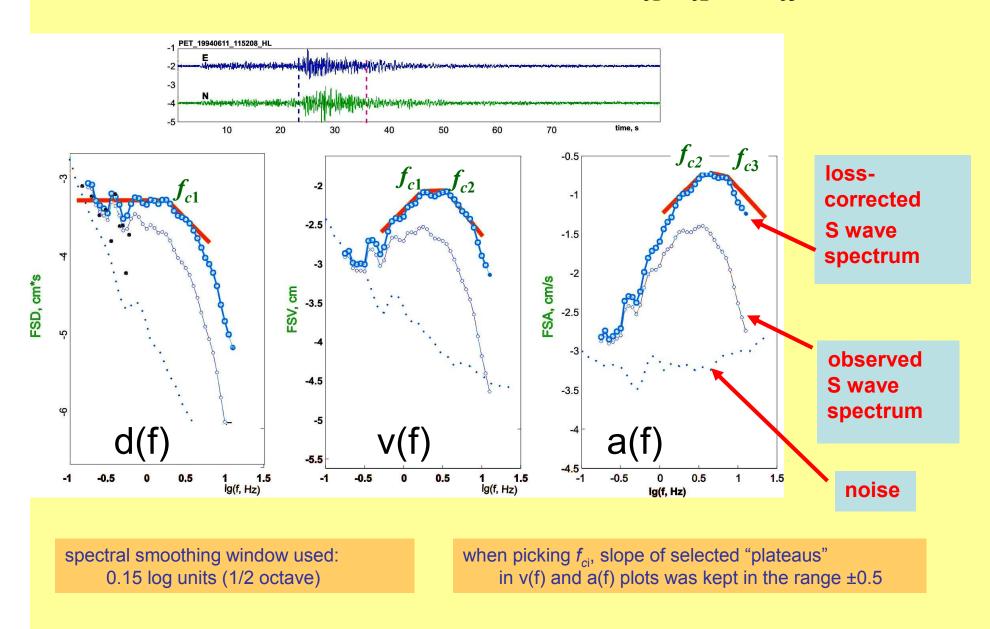
in the 5-25 Hz band based on (Gusev Guseva 2011) who analyzed kappa values;

accepted trend at r=100 km: $Q_{S}(f)=165 f^{0.42}$ _____

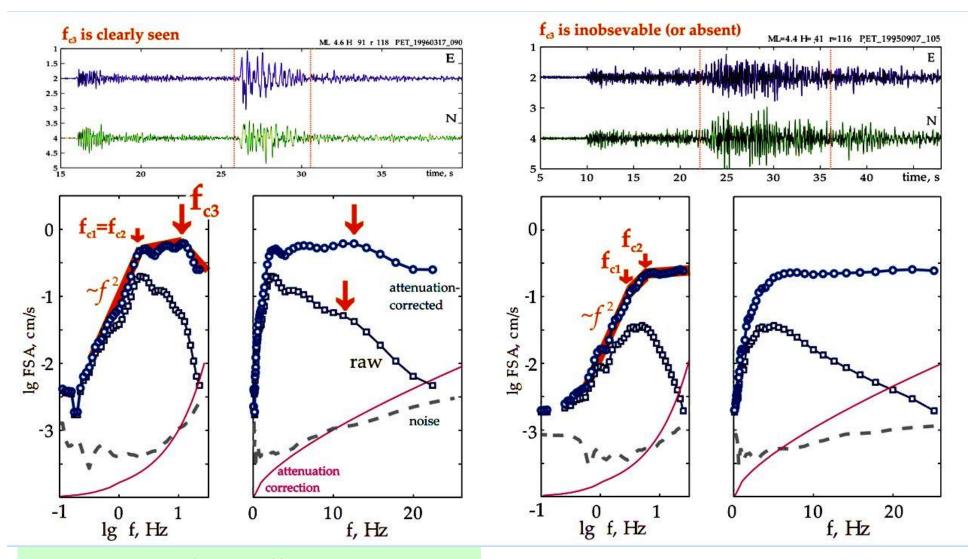
also κ_0 =0.016 s

and slow decay of Q_S^{-1} vs. r

Example of processing in a case when each of f_{c1} , f_{c2} and f_{c3} is observable



More example cases: f_{c3} may be observable or unobservable/absent



Here is why f_{c3} is difficult to notice when working in the log-linear scale

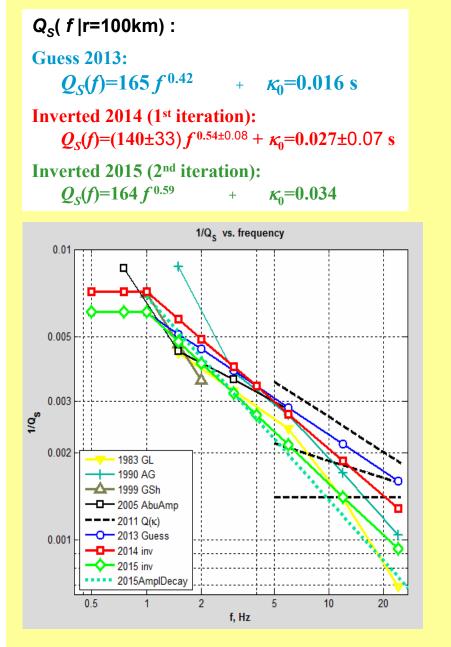
ITERATIVELY: find adjusted S-wave attenuation model using non-linear inversion.

Assumed attenuation model for loss factor in *S*-wave Fourier spectrum: $-\log_{e} \{A(f) / A_{0}(f)\} = \pi f \kappa_{0} + \pi f(r/c)Q^{-1}(f, r)$ where: *r* - hypocentral distance κ_{0} - constant loss factor for a site; $\kappa_{0} \approx \ln 2/\pi f_{\text{max-loss}}$ *c* - wave velocity; and Q(f,r) - path quality factor:

 $Q^{-1}(f, r) = Q_0^{-1}(f/f_0) \gamma (1 + q(r-r_0)/r_0)$

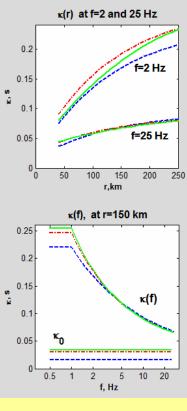
where $f_0 = 1$ Hz, $r_0 = 100$ km, c=3.8km/c;

and unknowns in inversion are: κ_0 , Q_0 , γ , q



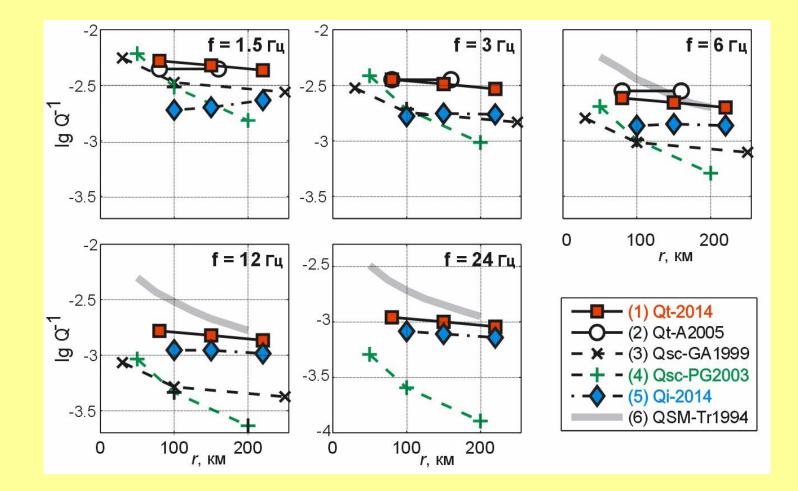
Comparing initial and inverted loss models



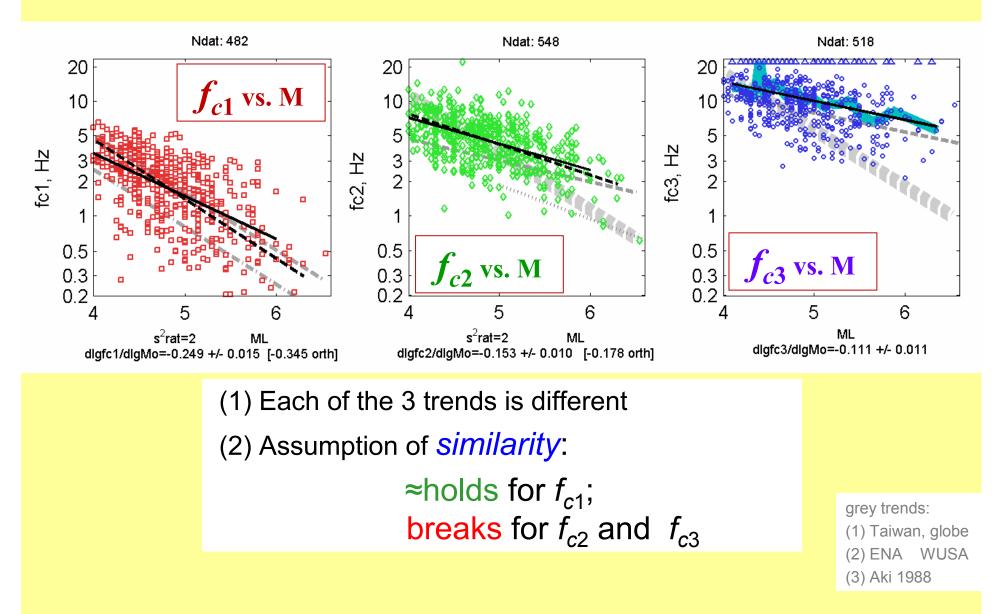


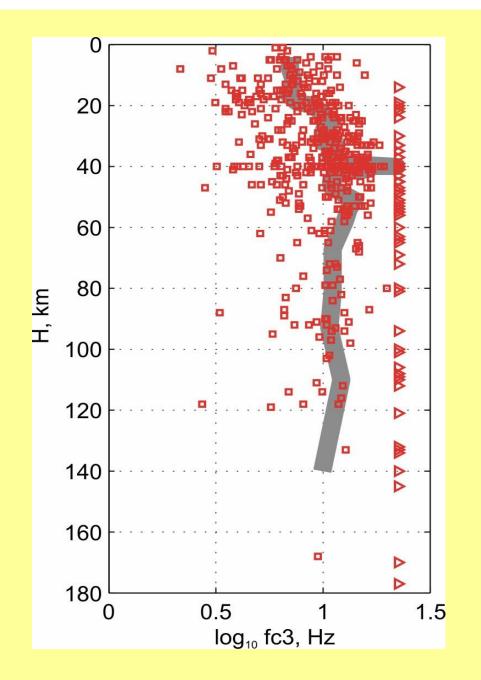
Loss variants 2014 and 2015 match CONVERGENCE!

Attenuation: Qtotal, Qscattering and Qintrinsic

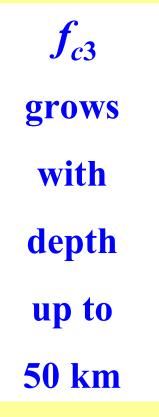


fc1,2,3 trends side by side: see how scaling varies





 $f_{c3}(H)$



PART 2

Possible physics that underlies the existence of f_{c3} and the trend of f_{c3} vs. M_0

Formation of f_{c3} can be attributed to the summary effect of the following factors (probably complementary action): (1) lower (or high-wavelength) limit of the size of fault surface heterogeneity [Gusev 1990] (2) finite fault zone thickness (gauge layer etc.)[Papageorgiou&Aki 1983] (3) finite cohesive zone width [Campillo 1983]

The trend $f_{c3} \propto f_{c1}^{0.2-0.3}$ or $f_{c3} \propto M_0^{\approx -0.1}$

suggests that f_{c3} slowly decreases with source size

An underlying *cause* of such a trend may be *variations of maturity of fault* surface :

the greater *distance* fault walls have slipped, the larger is their *wear*, and:
(1) the lower is the upper cutoff of heterogeneity spectrum [by abrasion]
(2) the wider/thicker is weak fault zone [by wear product accumulation]
[Gusev 1990; Matsu'ura 1990,1992].

Characteristic time hypothesis

Introduce charateristic time of a fault surface:

 $T_{is} = T_{c3} = 1/f_{c3}$: it takes T_{is} for rupture to run distance $L_{is} \approx v_r * T_{is}$ where v_r – rupture velocity like 2.5-3.5 km/s. We assume $T_{is} \approx T_{c3} = 1/f_{c3}$. •Also assume $T_{c1} = 1/f_{c1}$ near to rupture duration, and

• T_{c2} = 1/ f_{c2} near to local rise time of slip

Dimensionless description of a fault

• let $\tau_1 = T_{c1} / T_{c3} = f_{c3} / f_{c1}$, be normalized rupture duration,

•and $\tau_2 = T_{c2}/T_{c3} = f_{c3}/f_{c2}$ be normalized rise time

•then key dependence is $\tau_2 = \tau_2 (\tau_1)$.

•also one can set normalized rupture velocty as unity, then normalized rupture size is $\lambda_1 = \tau_1$;

Dependence of f_{c1} , f_{c2} and f_{c3} on M_0 .

for f_{ci} , define

$$\alpha_i = -d \lg f_{ci} / d \lg M_0$$

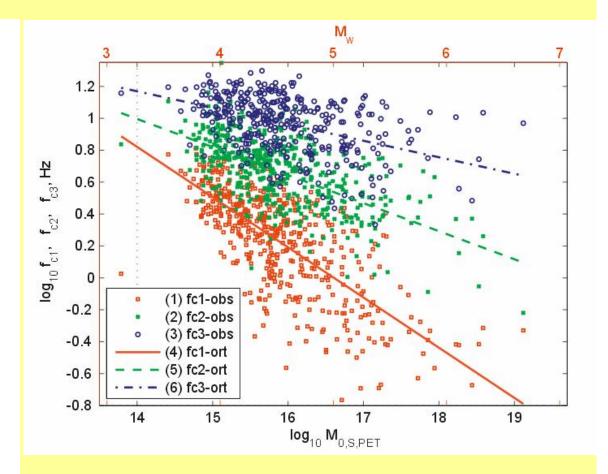
Orthogonal regression gives, for *fc*1:

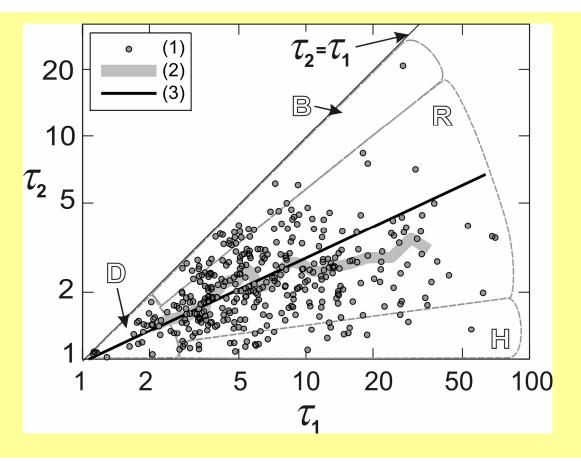
 α_1 =0.315±0.019,

(near to similarity that predicts $\alpha_1 = 1/3$); Also:

 α_2 =0.176±0.017 and α_3 =0.103±0.025.

Both show significant break of similarity.





Individual values of τ_1 and τ_2 for 430+ Kamchatka data

- •Zone B: Brune1970 style, $L \approx W$
- •Zone H: Haskell 1964 style, L>>l
- •Zone D: Kostrov 1964-Dahlen 1974 style (ω^{-3} spectrum)
- •Zone R: regular behavior:

There are analogies in many fields that study stochastic modes of

interface motion

•growth of solid: atoms, suspended particles etc

- •growth of lichen, cancer, etc
- •fire fronts
- deflagration (burning front in gas)
- •imbibtion (wetting, blotting)
- •ferromagnetic domain wall motion
- crack edge propagation

in all these phenomena, rough, often fractal (selfsimilar) lines are formed

Rough interfaces in disordered media

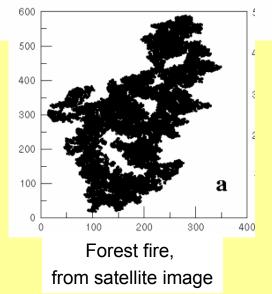
Burned paper

Ink in paper

Lichen

Bonami 2008
Buldyrev et al 1993
Caldarelli 2001
Gouyet 2005
Halpin-Healy 1995
Schmittbuhl et al 2003

Bacterium colony



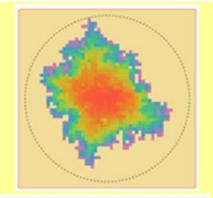


Fig. 4. Horizontal projection of the cluster of model B ($p = 0.809 = p_i$) which was started at the center of the scoren 2nd line targs ago. The current diameter of the cluster is about 2nd. The blue area shown the line interface that is left of y since the beginning of the process. Durkest hades of gray correspond to the largest heights of the interface. Red does forming "fractal dust" indicate cells that become we at a the current line step.

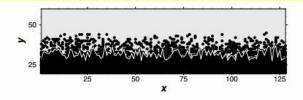
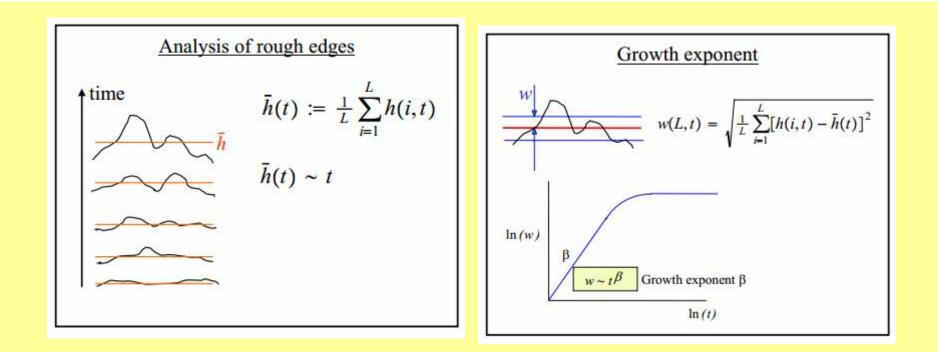
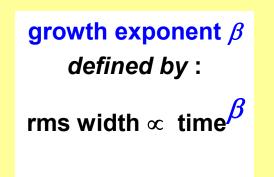


FIG. 1. The crack front for a 128×128 system. The fracture is propagating from bottom to top. The broken springs are black dots. The crack front is drawn as a white line.

SIMULATED





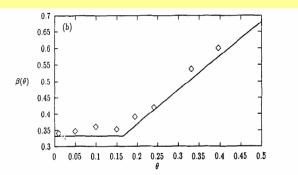
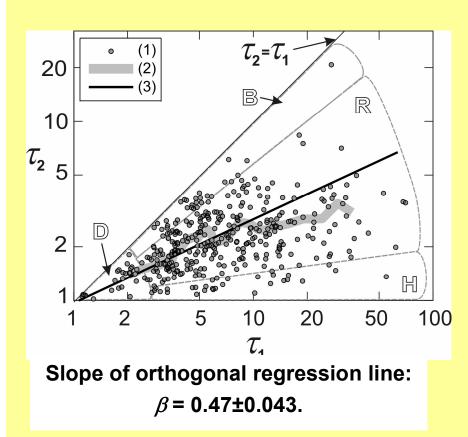
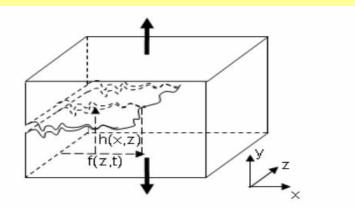


Fig. 4.18. Ballistic deposition subject to temporally correlated noise [LSW92], simulation results for (a) saturation width exponent $\chi = \alpha$, and (b) early-time index β .

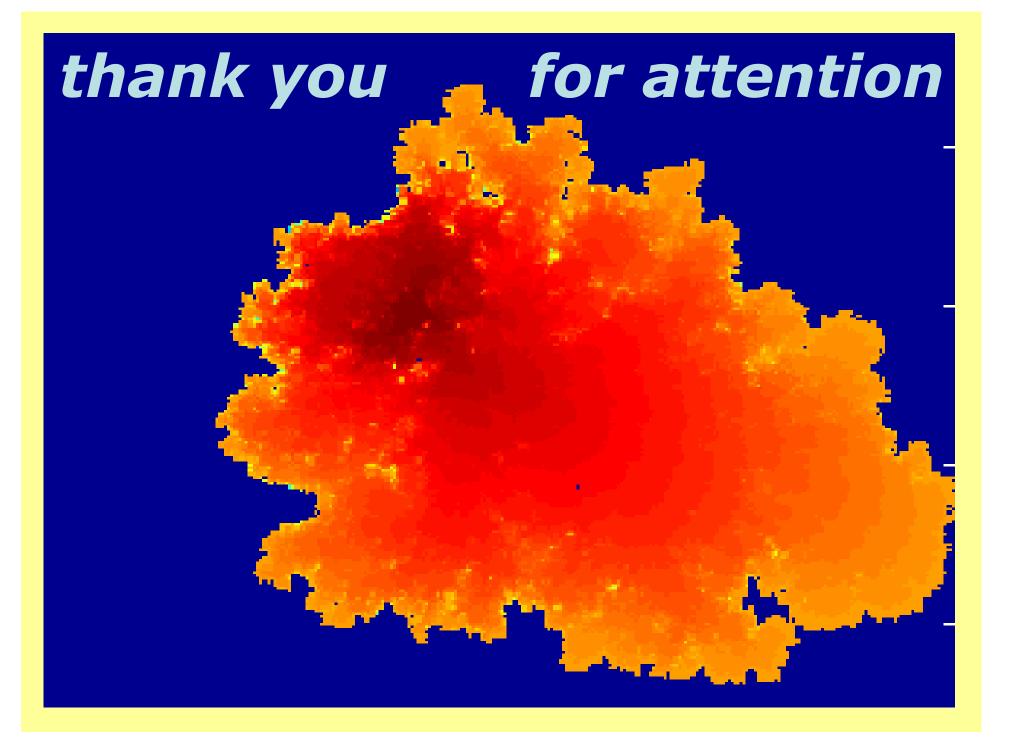




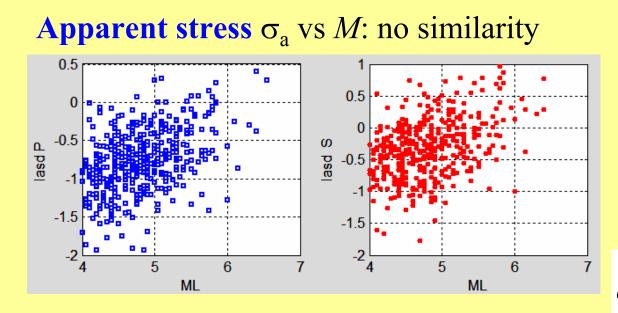
Slope β of rms width vs time trend $\beta = -d \lg \tau_2 / d \lg \tau_1$

	β
au 2(au 1) earthquake data	
Kamchatka, individual data	0.47
Kamchatka, trends	0.34
W.USA etc Aki 1988, trends	0.57
Middle Asia, Rautian data, trends	0.42
Theoretical models	
Eden growth	1/3
Directed percolation depinning	0.65
Observed trends	
Crack in PMMA	0.55
paper burning	0.47
superconductor transformation front	0.65
imbibition	0.60

point of growth!



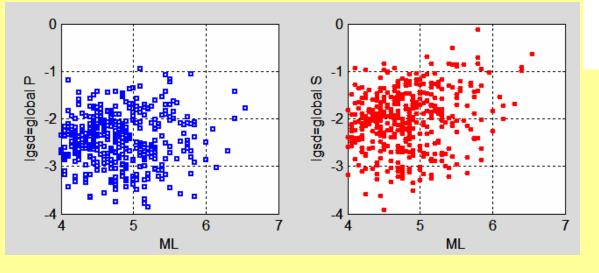
thank you for attention



Two ways of checking the similarity assumption make different results

$$\sigma_a = \frac{E_s}{M_0} \propto \frac{v_{\max}^2(f)(f_{c2} - f_{c1})}{d(f)|_{f=0}}$$

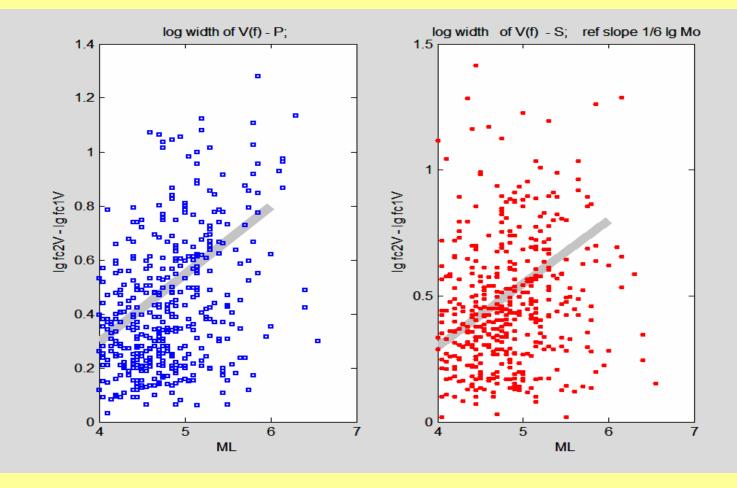
Stress drop
$$\Delta \sigma$$
 vs. *M*: approximate similarity



 $\Delta \sigma \approx \frac{M_0}{R^3} \propto \cdot f_{c1}^3 \cdot d(f)|_{f=0}$

IUGG Prague 2015

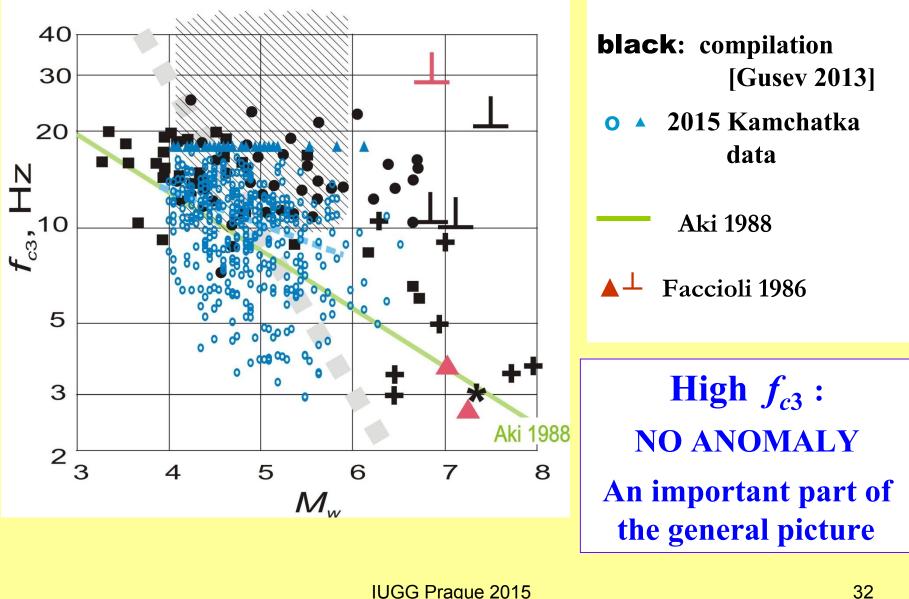
$LV = \log f_{c2} - \log f_{c1}$: log-width of velocity spectrum V(f) vs. M (similarity would result in M-independent LV)



Variation of LV with M causes M-dependence of σ_a at a fixed $\Delta\sigma$

IUGG Prague 2015

Trend of f_{c3} vs. M_w : new data compared to compilation-2010



IUGG Prague 2015