УДК 550.34

ОПРЕДЕЛЕНИЕ НАБОРА ХАРАКТЕРНЫХ ЧАСТОТ ОЧАГОВЫХ СПЕКТРОВ ДЛЯ СУБДУКЦИОННЫХ ЗЕМЛЕТРЯСЕНИЙ АВАЧИНСКОГО ЗАЛИВА *(Камчатка)*

А.А. Скоркина^{1,2}, А.А. Гусев^{1,3}

¹ Камчатский филиал «Геофизической службы РАН», 683006, Петропавловск-Камчатский, бульвар Б. Пийпа, 9, Россия ² Институт физики Земли им. О.Ю. Шмидта РАН, 123242, Москва, ул. Б. Грузинская, 10/1, Россия

³ Институт вулканологии и сейсмологии ДВО РАН, 683006, Петропавловск-Камчатский, бульвар Б. Пийпа, 9, Россия

Изучены очаговые спектры субдукционных землетрясений Камчатки с магнитудами 4.0-6.5 за 2011—2014 гг. Использовано 1272 очаговых спектра, восстановленных по записям S-волн от 372 землетрясений на шести цифровых станциях со скальным грунтом. Изучалась структура спектров на основе модели с тремя характерными («корнер-») частотами f_{c1}, f_{c2} и f_{c3} . При этом принимали, что между f_{c2} и f_{c3} спектр ведет себя как f⁻²; и через f_{c3} обозначили параметр «f_{max} очаговой природы» по Аки—Гусеву. Для определения корнер-частот сначала восстанавливали очаговый спектр из спектра S-волн, используя ранее разработанную модель затухания для района работ. При этом спектры сначала приводили к опорной станции со скальным грунтом, используя специально определенные для этого станционные спектральные поправки. Восстановленный очаговый спектр приближали кусочно-степенной функцией, снимали оценки f_{c1}, f_{c2} и f_{c3} , и изучали их зависимость от сейсмического момента M_0 («скейлинг»). Зависимость $f_{c1}(M_0)$ не противоречит гипотезе подобия очагов, когда ожидается $f_{c1} \sim M_0^{-1/3}$. Для f_{c2} и f_{c3} скейлинг близок к $f_{c2} \sim M_0^{-0.23}$ и $f_{c3} \sim M_0^{-0.13}$ соответственно, что указывает на явное нарушение подобия, особенно резкое для f_{c3} . Систематическое выявление частоты f_{c3} , ее определение и оценка ее скейлинга — основные результаты работы, существенные для понимания физики очагового процесса землетрясения. В плане приложений к моделированию сильных движений грунта, использование f_{c3} как параметра очага позволит исключить систематические ошибки при оценках параметров затухания и, в частности, популярного параметра спада спектра «каппа».

Землетрясение, очаговый спектр, скейлинг, третья корнер-частота, f_{\max} , f_{\max} очагового проис-хождения, каппа.

DETERMINATION OF CORNER FREQUENCIES OF SOURCE SPECTRA FOR SUBDUCTION EARTHQUAKES IN AVACHA GULF (Kamchatka)

A.A. Skorkina, A.A. Gusev

The source spectra of M = 4.0-6.5 subduction earthquakes of 2011–2014 in Kamchatka are studied. The dataset comprises 1272 source spectra recovered from S waves of 372 earthquakes recorded by six digital rock-ground stations. The structure of the spectra is examined on the basis of a spectral model with three corner frequencies f_{c1}, f_{c2} and f_{c3} . It was assumed that the spectra behave as f^{-2} between f_{c2} and f_{c3} , where f_{c3} denotes source-controlled f_{max} after Aki and Gusev. To determine the corner frequencies, we extracted the source spectrum from S-wave spectra using a previously developed attenuation model for the study area. The spectra were first reduced to the reference hard-rock station, employing a specially determined set of spectral amplifications of stations. We approximated the recovered source spectrum by a piecewise power-law function, estimated f_{c1} , f_{c2} , and f_{c3} , and examined their dependence on the seismic moment M_0 (i.e., scaling). The dependence $f_{c1}(M_0)$ does not contradict the hypothesis of source similarity when one expects $f_{c1} \sim M_0^{-1/3}$. For f_{c2} and f_{c3} , the scaling is close to $f_{c2} \sim M_0^{-0.23}$ and $f_{c3} \sim M_0^{-0.13}$, respectively, indicating a clear violation of the similarity, especially prominent for f_{c3} . Systematic identification of the frequency f_{c3} , its determination, and analysis of its scaling are the main results of the study, important for understanding the physics of earthquake source processes. The use of f_{c3} as a source parameter in strong ground motion simulations will eliminate biases in estimating attenuation parameters, in particular, the spectral decay parameter «kappa».

Earthquake, source spectra, scaling law, third corner frequency, f_{max} , source-controlled f_{max} , kappa

введение

Изучение очаговых спектров землетрясений интересно для физики очага землетрясения, а также важно для решения инженерно-сейсмологических задач. В теории очаговый спектр смещения (ОСС) описывается уровнем плоского участка спектра и его точками излома — характерными («корнер-») ча-

© А.А. Скоркина[⊠], А.А. Гусев, 2017 [⊠]e-mail: anna@emsd.ru

DOI: 10.15372/GiG20170708

стотами. Стандартной моделью очагового спектра смещения является модель «омега-квадрат» (ω^{-2}) [Aki, 1967; Brune, 1970], включающая плоский ($\sim f^0$) участок на низких частотах (HЧ) и убывание по f^{-2} на высоких частотах (BЧ). Эти два участка разделены изломом вблизи корнер-частоты f_c . Уже в работе [Brune, 1970] отмечено, что упомянутый излом может расщепляться на два; соответствующие корнер-частоты будем обозначать f_{c1} и f_{c2} . Частое формирование излома при f_{c2} известно ([Gusev, 1983, 2012; Papageorgiou, Aki, 1983] и др.), но свойства f_{c2} изучены недостаточно.

Для многих целей полезен очаговый спектр ускорения (ОСУ), который растет как f^2 на HЧ, имеет два излома при f_{c1} и f_{c2} , и площадку ($\sim f^0$) при $f > f_{c2}$. В спектрах записей ускорения правее подобной площадки всегда наблюдается верхний (ВЧ) срез спектра. В рамках модели ω^{-2} этот срез обычно объясняют ростом с частотой потерь на трассе луча. При известных потерях их можно учесть, так что восстановленный из наблюдений очаговый спектр должен оказаться плоским. Фактически после описанной коррекции ВЧ срез обычно сохраняется; граничная частота такого остаточного среза обозначена в [Hanks, 1982] как « f_{max} ». В работе [Gusev, 1983; Papageorgiou, Aki, 1983] формирование данного среза приписано очагу (см. обсуждение в [Gusev, 2012]). Однако вскоре было показано [Anderson, Hough, 1984], что его вероятная причина — потери на поглощение в верхней части разреза. Эти потери характеризуют величиной κ_0 ($\kappa_0 = \int dt/Q$, где l — короткий участок луча непосредственно под станцией). Однако систематически наблюдаются случаи, когда f_{max} обнаруживается на спектрах ускорения, которые исправлены за потери обоих видов: и на основной трассе луча, и непосредственно под станцией. Такие факты указывают на частично очаговую природу f_{max} . Наличие вклада очага в формирование f_{max} теперь обычно признается в принципе [Purvance, Anderson, 2003], но вопрос изучен совершенно недостаточно.

Сложный характер явления привел к возникновению неуклюжих терминов: 1) « f_{max} , управляемая площадкой (станцией)» и 2) « f_{max} , управляемая очагом»; далее они кратко обозначены как (1) f_{κ} и (2) f_{c3} , т. е. третья корнер-частота. Последний параметр будет важным объектом настоящего исследования. До сих пор не выработаны подходы, которые позволили бы уверенно и систематически расщепить вклады f_{κ} и f_{c3} в наблюдаемое явление « f_{max} ». Можно полагать, что, если определить и скомпенсировать потери при распространении волны, можно установить реальность верхнего среза ОСУ и при успехе получить численные оценки для f_{c3} . Для района Авачинского залива на Восточной Камчатке авторы работы [Гусев, Гусева, 2016] оценили достаточно надежно потери в среде (Q(f) и κ_0). Эти оценки потерь могут быть использованы для коррекции спектров записей станций в этом районе.

По данным одиночной ст. РЕТ за 1993–2005 гг. [Гусев, Гусева, 2014], с использованием предварительной модели потерь был впервые получен массовый материал по оценкам f_{c2} и f_{c3} , для Камчатки. Однако из-за ограниченной надежности этих результатов и общей низкой изученности параметров f_{c2} и f_{c3} данную работу следует провести на новом уровне. Требуется применить уточненные оценки поглощения в среде, а вместо одиночной станции использовать сеть станций. В 2008—2010 гг. для района Авачинского залива такая сеть была организована, что создало возможность провести подобную работу, она описана далее.

ИСХОДНЫЙ НАБОР ДАННЫХ

К 2011 г. на Камчатке была развернута цифровая система наблюдений, включающая акселерометры СМG5T и СМG5TD [Чебров и др., 2013]. Для изучения очаговых спектров землетрясений региона обрабатывали записи таких приборов, расположенных на скальных или плотных грунтах в районе Авачинского залива, на станциях: «Дальняя» (DAL), «Ходутка» (KDT), «Карымшина» (KRM), «Петропавловск» (PET), «Русская» (RUS) и «Шипунский» (SPN) за 2011–2014 гг. (рис. 1, *a*). Диапазон гипоцентральных расстояний *r* составляет 45—250 км, в основном более 75 км (рис. 1, *б*), глубины до 170 км, в основном до 50 км, диапазон магнитуд $M_L - 4.0 - 6.8$. В обработке использованы записи от 372 субдукционных землетрясений. Записи с высоким уровнем шума или наложением помех исключались.

Отсутствие записей на расстояниях менее 50—70 км от станций (см. рис. 1, δ) — специфическое свойство получаемых на Камчатке записей субдукционных землетрясений: их очаги расположены под дном океана, а станции — на побережье. Обработка подобных данных не всегда дает полную информацию об очагах и среде, с этим приходится мириться.

ПРИНЦИПЫ ПЕРЕСЧЕТА НАБЛЮДЕННЫХ СПЕКТРОВ К ОЧАГУ

Для обоснования примененной методики анализа данных следует рассмотреть очаг землетрясения, очаговый спектр и его связь с записью на станции (сигналом).

Случай однородной среды без потерь («идеальный»). В данной работе внутренняя структура очага землетрясения не затрагивается. Используется описание очага через эквивалентный точечный источник — двойной диполь, скалярный сейсмический момент которого растет по закону $M_0(t)$; скорость роста — это $\dot{M}_0(t)$. Амплитудный спектр $\dot{M}_0(t)$ обозначаем $M_0(f)$, он называется очаговым спек-

Рис. 1. *а* — карта с расположением выбранных станций и эпицентров землетрясений; *б* — распределение использованных записей по магнитуде землетрясения и гипоцентральному расстоянию.

Здесь и далее N — количество спектров.

тром. Сейсмический момент как численный параметр очага — это $M_0 = M_0(t)\Big|_{t=\infty} = \dot{M}_0(f)\Big|_{f=0}$. С точностью до множителя, функции $\dot{M}_0(t)$ и $\dot{M}_0(f)$ совпадают соответственно с временным ходом D(t) и спектром D(f) сигнала смещения объемных волн в идеальном случае однородной неограниченной упругой среды без потерь. В этом случае

$$D(t) = A_1 \dot{M}(t - r/c_s); \quad A_1 = \frac{R_s}{4\pi\rho c_s^3 r},$$
(1)

где R_s — диаграмма направленности для смещения в S-волне (далее принимается среднее по фокальной сфере значение $R_s^2 = 0.4$), ρ и c_s — плотность и скорость S-волн. Полезно также ввести функцию $\ddot{M}_0(f)$, связанную со спектром V(f) сигнала скорости V(t), а также «очаговый спектр ускорения» $\ddot{M}_0(f) = (2\pi f)^2 \dot{M}_0(f)$, связанный со спектром A(f) сигнала ускорения A(t). При изучении реальных очагов вычисленные спектры сигналов приходится сглаживать (усреднять по ограниченной полосе частот), что оправдывается обычным отсутствием в наблюдаемых спектрах выраженных систематических пиков или провалов. Для восстановления очаговых спектров по реальным записям следовало привести спектры записей к описанным выше идеальным условиям.

Приближенные характеристики реального случая. В реальных условиях имеет место несколько дополнительных к (1) эффектов, которые будем описывать через дополнительные множители к правой части (1). Рассмотрим их.

1.1. Эффект свободной поверхности, множитель $C_{11}\approx 2.0.$

1.2. Проектирование вектора смещения в S-волне на направление компоненты приемника C_{12} . Работали со спектрами горизонтальных компонент и принимали $C_{12}^{2} = 0.5$.

1.3. Искривление лучей. Его эффект можно записать как множитель $C_{13} = G(r)/r$. Этот фактор в наших условиях трудно оценить уверенно, так как вид записей плохо согласуется с представлениями геометрической сейсмики. Далее принято $C_{13} = 1$.

2.1. Влияние отношения импедансов (акустических жесткостей) среды вблизи источника («0») и приемника («1») $C_{21}(f) = (c_s^{(0)}\rho^{(0)} / c_s^{(1)}\rho^{(1)})^{0.5}$. Этот фактор — частотно-зависимый и дает существенный вклад в эффекты реальной среды. В данной работе вклад фактора $C_{21}(f)$ учитывается с помощью «чет-

верть-волнового» приближения [Boore, 2003]; его идея — использование в качестве $c_s^{(1)}\rho^{(1)}$ значения среднего импеданса в приповерхностном слое толщиной H(f), где H(f) определяется из условия

$$\frac{1}{4f} = \int_0^{H(f)} A_s^{-1}(l) dl , \qquad (2)$$

где *dl* — элемент луча.

2.2.Частотно-зависимые условия регистрации вблизи приемника (верхняя часть разреза, локальная геология, эффект рельефа и пр.), редко сводимые к простой схеме слоя на полупространстве. Этот фактор, $C_{22}(f)$, еще называют «спектральный отклик станции». В наших условиях его можно оценить лишь эмпирически, причем в относительных единицах, принимая $C_{22} = 1$ для некоторой «эталонной» станции с жестким скальным грунтом.

2.3. Поглощение в среде (неупругие потери). Этот фактор лишь слегка искажает форму сигнала, поэтому для однородной по поглощению среды с добротностью «по поглощению» Q_i его можно записать в виде спектрального множителя

$$C_{23}(f) = \frac{D_e(f)}{D(f)} = \exp\left(-\frac{\pi f r}{c_s Q_i(f)}\right) = \exp\left(-\frac{\pi f t}{Q_i(f)}\right),\tag{3}$$

где D(f) — спектр сигнала в среде без потерь, $D_{e}(f)$ — то же, с потерями.

3.1. Потери на рассеяние (на большие углы). Поясним, что, согласно традиции региональной сейсмологии (в отличие, например, от оптики), волны, рассеянные на малые углы, рассматриваются суммарно с прямой волной (поскольку их вклады неразделимы на практике), и такая сумма выступает как «прямая волна». Такой подход возник в условиях отсутствия на записях объемных волн ожидаемого одиночного короткого импульса (или серии импульсов), вместо этого наблюдается растянутый сигнал шумового облика.

Итак, по аналогии с (3) введем добротность по рассеянию Q_{sc} и обозначим аналог множителя $C_{23}(f)$ с заменой Q_i на Q_{sc} как $C_{31}(f)$. Поскольку вклады в потери от поглощения и от рассеяния трудно расщепить далее будет использоваться параметр суммарных потерь: $Q^{-1} = Q_i^{-1} + Q_{sc}^{-1}$ и соответствующий спектральный коэффициент для «прямой волны»

$$C_{\pi}(f) = C_{23}(f) C_{31}(f).$$
(4)

3.2. Эффекты многолучевого распространения и обмена на границах. В условиях Камчатки, где фазы типа $S_n, S_g/L_g$ и др. практически не выделяются, эти эффекты обычно неотделимы от эффектов рассеяния, и качественно близки. Будем считать, что потери энергии за счет данного фактора входят в $C_{\pi}(f).$

Будем характеризовать суммарные потери при распространении в однородной среде параметром $\kappa = t/Q = r/cQ$. Для реальной среды удобно считать, что к имеет две компоненты

$$\kappa = \kappa_0 + \kappa_v = \kappa_0 + \frac{r}{AQ(f,r)},\tag{5}$$

где Q(f, r) характеризует потери на пути распространения волны, за исключением тонкого слоя вблизи станции, а κ_0 описывает потери в этом слое. Наблюдения показывают, что κ_0 (в отличие от κ_y) не зависит от частоты.

ПРИНЯТЫЕ ПАРАМЕТРЫ И РАСЧЕТНЫЕ СХЕМЫ **ЛЛЯ ПЕРЕСЧЕТА НАБЛЮЛЕННЫХ СПЕКТРОВ К ОЧАГУ**

Для приведения спектра записи к условиям идеального случая следовало оценить вклады вышеописанных факторов по пунктам 2.1, 2.2, 2.3, 3.1, 3.2.

Расчет импедансных поправок. В качестве опорной (эталонной) станции по п. 2.2 принимали станцию РЕТ с высокоимпедансным скальным грунтом; обоснование такого выбора дано в [Pavlenko, 2013; Gusev, Guseva, 2016]. Для реализации п. 2.1 для условий станции РЕТ использовали разрез

Таблица 1.	Рабочий скоростной разрез для станции РЕТ								
<i>Н</i> _{кровли} , км	0	0.025	0.25	0.5	1.5	4	29		
<i>с</i> _{<i>p</i>} , км/с	1.4	2.6	2.6	4	5.5	6.3	6.3		
<i>с_s</i> , км/с	0.8	1.4	1.7	2.0	2.8	3.6	3.6		
ρ, кг/см ³	2.1	2.1	2.2	2.4	2.7	2.8	3.3		

Рабочий скоростной разрез для станции РЕТ

Рис. 2. Функция $C_{21}(f)$, рассчитанная методом «четверть-волнового приближения» по скоростному разрезу, представленному в табл. 1.

- 2

(табл. 1), построенный с учетом [Гусев и др., 2009; Pavlenko, 2012]. 2 Расчет по (2) вели для вертикального луча. График функции $C_{21}(f)$ представлен на рис. 2.

Определение спектральных станционных поправок. Функции $C_{22}(f)$ («спектральные поправки станций») определяли для каждой станции, например SPN, как средние отношения спектров записи волн *S* и коды одного и того же землетрясения на SPN и PET. В случае *S*-волн спектры предварительно приводили к фиксированному $r_0 = 1$ км с учетом модели потерь (см. далее).

В случае коды в отношение входили станционные спектры участка записи коды одинаковой длительности и с одинаковым запаздыванием относительно времени в очаге t_0 . В обоих случаях использовали среднеквадратические амплитудные спектры двух горизонтальных компонент. Значения отношений, кратко обозначаемые H/H_{ref} , осреднялись по землетрясениям. Параллельно для сопоставления полученных отношений с независимыми данными применяли популярную технологию оценки спектральных особенностей станции по Накамура [Nakamura, 1989], через отношение спектров на горизонтальном и вертикальном каналах (H/V). На рис. 3 иллюстрируется расчет осредненных отношений спектров *S*-волн и кода-волн для двух станций RUS и NLC, по записям землетрясений 2011—2012 гг. Рассчитывали средние, по полосам шириной 0.5 Гц, для набора осевых частот 0.5, 1.0, 1.5, ..., 25 Гц. Для *S*-волн использовано 117 спектров; для кода-волн — 38; для отдельных полос число наблюдений несколько меньше. На рис. 4 приведены результирующие отношения спектров для семи станций.

На рис. 3 видно, что оценки по S-волнам и коде приблизительно согласуются. Однако разброс оценок по коде много ниже, чем по S-волнам ($\sigma(\lg H/H_{ref})$ порядка 0.1 против 0.3). Метод Накамура демонстрирует в наших условиях крайне ограниченные возможности отношения H/V для оценки амплитуд спектральных аномалий, хотя факт аномалии иногда выявляется более четко. Оказалось, что по H/V

хорошо локализуются спектральные пики: для NLC при 4-6 Гц, для KRM около 2 Гц. Однако устойчивый рост спектральных поправкок для RUS и KDT, достигающий 10 раз на 20-25 Гц как для S-волн, так и для коды, не проявляется в отношениях *H*/*V*. Рост поправок с частотой, особенно выраженный для RUS и KDT, отражает устройство скоростного разреза под станциями в его верхних десятках метров. Любопытно наличие на RUS спектральных поправок ниже единицы при f ниже 1.4 Гц, не имеющее аналогов ни для описанной здесь группы станций, ни для других изученных станций и площадок. Данное явление мы приписываем геологическим особенностям окрестностей ст. RUS. Под этой станцией

Рис. 3. Индивидуальные отношения спектров *А*/*A_{ref}* для станций RUS (*a*) и NLC (*б*).

В каждом случае четыре графика — это индивидуальные (серые линии) и средние (сплошные линии) отношения спектров; штрихпунктиром дана робастная оценка границ интервала $\pm 1\sigma$ (по интерквартильной ширине). Приводятся отношения спектров горизонтальной и вертикальной компонент (H/V), а также горизонтальной компоненты станции относительно такой же на РЕТ для S-волн (S) и кода-волн (C).

Рис. 4. Средние отношения спектров семи станций.

В числителе отношений — спектры для горизонтальных каналов. Левая колонка — в знаменателе отношений спектры горизонтального канала на РЕТ, правая колонка — в знаменателе спектр вертикального канала той же станции. С — расчет по кода-волнам; S — расчет по S-волнам; C&S –взвешенное среднее двух названных оценок с весами 2/3 и 1/3 соответственно. Кривая C&S дает станционные поправки, которые далее применяли для приведения наблюденных спектров других станций к условиям ст. РЕТ. Вертикальные отрезки формальные 95%-ные доверительные интервалы для оценок среднего.

присутствует высокоскоростной блок гранитоидов, в то время как под другими станциями располагаются толщи сланцев и вулканитов с меньшими скоростями. По причине выявленного мощного резонанса вблизи 5 Гц для станции NLC от использования ее данных для выявления характерных частот очаговых спектров отказались, потому что построенная описанным путем сглаженная поправочная функция не дает полной коррекции.

Таким образом, с помощью метода Накамура уверенно выявили эффекты ярких станционных резонансов, а в качестве окончательных станционных поправок для коррекции наблюденных спектров приняли средневзвешенные поправки типа H/H_{ref} по двум способам расчета, приписывая оценкам по коде вес 2/3, а оценкам по *S*-волнам — вес 1/3.

Учет затухания при распространении волны. Для расчета множителя $C_n(f)$ использовали результаты [Гусев, Гусева, 2016] для параметров потерь в среде вблизи ст. РЕТ. Принимали, что функция добротности в (5) имеет вид

$$Q^{-1}(f,r) = Q_0^{-1} \left(\frac{f}{f_0}\right)^{-\gamma} \left(1 + \frac{q(r-r_0)}{r_0}\right),\tag{6}$$

причем $f_0 = 1$ Гц, $r_0 = 100$ км, $Q_0 = 156$, $\gamma = 0.56$, q = -0.08 и $\kappa_0 = 0.03$ с, по [Гусев, Гусева, 2016].

Таким образом, в принятой модели формирования спектра сигнала коэффициент A_1 в (1) заменяется на спектральную функцию $A_2(f) = C_t(f) A_1$, где

$$C_t(f) = C_{11} C_{12} C_{13} C_{21}(f) C_{22}(f) C_{\pi}(f).$$
(7)

В практических расчетах было удобно умножать наблюденный спектр на коэффициент приведения $C_r(f) = r / C_t(f)$, в результате получали спектр для стандартного гипоцентрального расстояния

 $r_0 = 1$ км. Для таких спектров мы сохраним обозначения D(f), V(f) и A(f), а исходные спектры записи переобозначим как $D_0(f)$, $V_0(f)$ и $A_0(f)$.

При расчетах также важен вопрос о выборе временного окна S-волн для расчета их спектров. Начало окна принималось в момент вступления S-волны. В [Гусев, Гусева, 2016] сравнивали оценки спектров при двух способах выбора конца окна: диалоговом, когда выбор делали визуально при завершении участка больших амплитуд группы S, и автоматическом, когда длина окна фиксировалась как 25 % от времени пробега S-волн. Результаты мало отличались. В данной работе использовали диалоговый способ.

ПОЛУЧЕНИЕ ОЦЕНОК ОЧАГОВЫХ СПЕКТРОВ И СНЯТИЕ КОРНЕР-ЧАСТОТ

Расчет сглаженных спектров. Расчеты спектров выполнялись с помощью специализированной диалоговой программы, реализованной в Matlab (рис. 5). Она позволяет просматривать исходные записи ускорений, трассы смещения, пересчитанные из ускорений, сглаженные спектры Фурье объемных волн в вариантах D(f), V(f) и A(f), контролировать качество записей и спектров, снимать отсчеты корнер-частот. Поправки $C_r(f)$ вносятся автоматически. Спектры *S*-волн, полученные БПФ, приводились к r = 1 км и сглаживались по полосам шириной 2/3 октавы, причем сетка осевых частот полос принималась как 6 точек на октаву.

Получение и контроль оценок корнер-частот. Далее в интерактивном режиме с кривых спектров снимались, при возможности, оценки корнер-частот. Эта последовательность иллюстрируется на рис. 5. Описанная процедура развивает методику [Гусев, Гусева, 2014]. Суммарно удалось снять значения корнер-частот для 1252 спектров *S*-волн от 372 землетрясений. Использовали только спектры, перекрывавшие не менее трех октав при отношении сигнал-шум (С/Ш) более 2.5 (по амплитуде). В отношении f_{c3} обнаруживались случаи, когда спектр нельзя было восстановить до 20–25 Гц из-за неприемлемо-

Рис. 5. Пример обработки записи S-волн, землетрясение 2014.03.18 в 07:23, $M_L = 4.2$, r = 100 км, H = 46 км.

Приведена копия диалогового окна (a). Сверху вниз: $A_0(t)$ и $D_0(t)$ для *E*-компоненты, ниже — то же, для *N*-компоненты, ст. РЕТ. Участки цифровки группы *S* и шума выделены парами вертикальных линий. Внизу — графики спектров смещения (б), скорости (в) и ускорения (г). Кривые (б), снизу вверх: спектр шума, $rD_0(f)$, D(f). Приведена также ломаная, приближающая D(f) и построенная интерактивно, ее точки излома фиксируют выбор корнер-частот. Аналогичные кривые (s, r) для $V(f) = 2\pi f D(f)$ и $A(f) = (2\pi f)^2 D(f)$.

Рис. 6. Примеры спектров ускорения с четко выраженной $f_{c3}(a)$ и с ненаблюдаемой $f_{c3}(b)$.

В каждом блоке приведены три графика, из которых верхний — записи ускорения, а на двух нижних изображен сглаженный спектр ускорения. Эти два графика отображают идентичные цифровые данные, но различаются устройством шкалы абсцисс: на левом графике шкала — логарифмическая, на правом — натуральная. Обозначения — те же, что и на рис. 5. В блоке (*a*) отображена запись землетрясения 2013.05.20 в 01:07, $M_L = 5.8$, r = 160 км, H = 55 км, на KDT. В блоке (*б*) отображена запись землетрясения 2013.09.21 в 06:58, $M_L = 5.6$, r = 149 км, H = 46 км, на KRM. Примечательна полная неразличимость f_{c3} на левом графике в натуральном масштабе, особенно на некорректированном спектре. Подобные случаи обычны, при стандартном подходе к оцениванию к так могут возникать искаженные, систематически завышенные оценки потерь.

го отношения С/Ш на высоких частотах, либо когда загиб спектра вниз выявлялся ненадежно. Оценку f_{c3} снимали лишь в таких случаях, когда выше частоты среза спектр ускорения падает по f^{-1} или круче, и это имеет место в пределах полосы от полуоктавы или шире. В сомнительных случаях считали, что надежной информации относительно f_{c3} извлечь невозможно, и не использовали данный спектр для оценки f_{c3} . Было отброшено 135 (11%) от исходного числа (1252) случаев. Осталось 1117 случаев двух видов: либо с уверенно наблюдаемой f_{c3} (таких 1028 или 92%, см. рис. 6, *a*) либо с плоским спектром вплоть до 25 Гц (таких 89 или 8%, см. рис. 6, *б*). С содержательной точки зрения, в последнюю группу входят случаи, когда f_{c3} существует, но расположена выше 25 Гц и поэтому ненаблюдаема, либо когда истинный очаговый спектр смещения имеет асимптотику типа «омега-квадрат».

Снятие оценки f_{c1} нередко также вызывало затруднения: вместо ожидаемой четкой площадки спектра D(f) при снижении частоты виден его рост. Вероятная причина этой проблемы — наличие на низких частотах заметного вклада поверхностных волн, что отмечалось в том же регионе и ранее [Abubakirov, Gusev, 1990; Абубакиров, 2005]. Сомнительные случаи исключались. Доля подобных случаев — около 35%. Значение f_{c2} удавалось снять всегда. При этом нередки случаи, когда $f_{c1} = f_{c2}$ или $f_{c2} = f_{c3}$.

Сняв значения характерных частот очаговых спектров, для каждой из 1252 пар землетрясение «*i*»—станция «*j*» сформировали (не всегда полный) комплект оценок $\{f_{c1}, f_{c2}, f_{c3}\}$ с суммарным числом оценок 839, 1252 и 1028 соответственно: от 183 до 248 комплектов на каждой станции.

КОНТРОЛЬ ВНУТРЕННЕЙ СОГЛАСОВАННОСТИ ОЦЕНОК КОРНЕР-ЧАСТОТ

После получения оценок корнер-частот был проведен контроль их внутренней согласованности. На первом этапе сопоставляли оценки f_{c1} , снятые с графиков спектров D(f) и $V(f) = 2\pi f D(f)$ (рис. 7, *a*) и обозначаемые f_{c1}^D и f_{c1}^V . Аналогично с графиков спектров V(f) и $A(f) = 2\pi f V(f)$ снимали оценки f_{c2} (рис. 7, *b*) и обозначали их f_{c2}^V и f_{c2}^A . В идеальном случае оценки должны совпасть. Фактический разброс между оценками двух типов невелик (в среднем менее 0.05 десятичного логарифма или 12 %), что поддерживает приемлемость принятой интерактивной методики снятия оценок корнер-частот. Далее использовали средние значения $f_{c1} = (f_{c1}^D + f_{c1}^V)/2$ и $f_{c2} = (f_{c2}^V + f_{c2}^A)/2$.

Рис. 7. Проверка согласия оценок f_{c1} и f_{c2} , снятых в разных диалоговых окнах.

 $a - f_{c1}^D$ в сравнении с f_{c1}^V ; $\delta - f_{c2}^V$ в сравнении с f_{c2}^A . Средняя разность $f_{c1}^V - f_{c1}^D$ и соответствующее стандартное уклонение составляют 0.04 и 0.06 (*a*); аналогичные значения для $f_{c2}^A - f_{c2}^V$ составляют — 0.07 и 0.09 (δ).

Другого рода контроль провели на основе сравнения оценок по одному событию на нескольких станциях. Индивидуальные оценки f_{ck} (k = 1, 2, 3) для каждой комбинации очаг «i»— станция «j» обозначим $f_{ck}^{(ij)}$, при этом $j = 1, 2, ..., n, n \le 6$, в основном $n \ge 4$. Среднесетевое (по всем j) значение $\lg f_{ck}^{(ij)}$ обозначим $\lg f_{ck}^{(i)}$. Рассчитали невязки $\delta_k^{(ij)} = \lg f_{ck}^{(ij)} - \lg f_{ck}^{(i)}$. На рис. 8 показаны гистограммы невязок $\delta_k^{(ij)}$ для k = 1, 2 и 3. Видно, что соответствующие распределения не сильно отличаются от нормального закона. Для каждого i оценили дисперсию $\lg f_{ck}^{(ij)}$ как

$$\sigma_k^{2(i)} = \frac{1}{n-1} \sum_{j=1,..n} \delta_k^{2(j)}$$
(8)

и результаты осреднили по всем *i*, получив среднюю дисперсию σ_k^2 . Значения σ_k для невязок $\delta_k^{(j)}$ оценок $\lg f_{c1}$, $\lg f_{c2}$ и $\lg f_{c3}$ составляют 0.17, 0.14 и 0.11 соответственно, такова точность одиночных оценок. Относительную точность средней по *n* станциям оценки f_{ck} можно получить как $\varepsilon_k = \sigma(\ln f_{ck})/n^{0.5} = 2.3\sigma_k/n^{0.5}$, что составляет при типичном n = 4 от 20 до 13 %. Полученные оценки точности сочтены приемлемыми.

СКЕЙЛИНГОВЫЕ СВОЙСТВА КОРНЕР-ЧАСТОТ

Убедившись во внутренней непротиворечивости полученных оценок, далее изучали характер скейлинга для f_{c1}, f_{c2} и f_{c3} , т. е. проверяли существование зависимостей типа $f_{ck} \sim M_0^{-\beta_k}$ и находили оцен-

Рис. 8. Гистограммы невязок $\delta_k^{(ij)}$ (станционная минус среднесетевая) для оценок первой, $f_{c1}(a)$, второй, $f_{c2}(\delta)$ и третьей, $f_{c3}(s)$ корнер-частот.

Рис. 9. Зависимости характерных частот f_{c1}, f_{c2} и f_{c3} , определенных по спектрам S-волн, от магнитуды $M_{W(L)}$ (черная линия), полученные ортогональной регрессией.

Для сопоставления проведены (на произвольном уровне) прямые с наклоном -0.5 (серые линии), соответствующие связи $f_{ck} \sim M_0^{-1/3}$. Видно, что данные f_{c1} примерно следуют тренду, ожидаемому согласно гипотезе подобия, в то время как тренды для f_{c2} , и еще в большей степени для f_{c3} , этой гипотезе противоречат.

ки входящего в них показателя β_k. Оценку сейсмического момента получали из значения моментной магнитуды, оцененного по величине камчатской региональной магнитуды M_L по простейшей формуле

$$M_{W(L)} = M_L - 0.20. \tag{9}$$

Для обоснования такой формулы сравнили M_L изученных землетрясений и значение M_W , пересчитанное из определения M_0 службой GCMT. Данные приблизительно согласуются с характером связи в виде постоянного относительного сдвига.

На рис. 9 приводится зависимость оценок f_{c1}, f_{c2} и f_{c3} от $M_{W(L)}$. Свойства скейлинга для f_{c1} хорошо изучены в литературе. При M > 6 он обычно близок к $f_{c1} \sim M_0^{-1/3}$, и такая зависимость указывает на кинематическое и динамическое подобие очаговых процессов при разных магнитудах. Вопрос о характере скейлинга при M < 6 — дискуссионный. Ряд авторов полагает, что подобие здесь также имеет место, другие обнаруживают, что β_1 существенно ниже 1/3. В предположении линейной связи lg f_{c1} с $M_{W(L)}$ выполнили обычную линейную регрессию. Также использовали ортогональную регрессию, исходя из вероятного наличия неточностей в оценках M_L . При этом зафиксировали значение отношения стандартных уклонений для lg f_{ck} , относительно M_L , равное двум (с некоторым запасом). Результаты ортогональной регрессии считали предпочтительными. Аналогичную обработку провели для f_{c2} и f_{c3} . Линейные связи действительно выявляются (см. рис. 9, a—e, табл. 2). Оценки наклона b_k переводятся в оценки $\beta_k = -\text{dlg} f_{ck}/\text{dlg} M_0$ путем умножения на 2/3.

Из табл. 2 видно, что наклон связи $\lg f_{c1}(M_{W(L)})$, $b_1 = 0.42$, полученный по обычной регрессии, отличен от значения 0.51, ожидаемого в условиях подобия. Хотя данное различие — формально значимое,

Таблица 2. Регрессионный анализ скейлинговых зависимостей вида $\lg f_{ck} = a_k - b_k M_{W(L)}$ с помощью вариантов линейной регрессии

Пара- метр	N	Ортогональная регрессия*						Обычная регрессия					
	11	a_k	sa_k	b_k	sb_k	σ_k	R	a_k	sa_k	b_k	sb_k	σ_k	R
$\lg f_{c1}$	173	2.19	0.18	0.51	0.04	0.21	0.62	1.71	0.17	0.42	0.04	0.21	0.62
$\lg f_{c2}$	234	1.86	0.10	0.35	0.02	0.16	0.67	1.69	0.10	0.31	0.02	0.16	0.67
$\lg f_{c3}$	235	1.56	0.09	0.19	0.02	0.14	0.50	1.48	0.09	0.17	0.02	0.14	0.50

Примечание. *sa_k*, *sb_k* — стандартные уклонения для оценок *a_k* и *b_k*; σ_k — остаточная среднеквадратическая невязка; *R* — коэффициент детерминации; *k* = 1, 2, 3.

*Предпочтительный вариант.

но его реальность сомнительна: с учетом предполагаемой неточности значений M_L значение b_1 может достичь 0.51. Однако аккуратную оценку получить затруднительно, так как истинное соотношение точностей неизвестно. Можно полагать, что истинное b_1 находится в интервале 0.42–0.51, так что $\beta_1 = 0.28$ –0.34. Указанный интервал захватывает значение $\beta_1 = 1/3$, ожидаемое в рамках гипотезы подобия, так что данные скорее согласуются с ее справедливостью. В любом случае полученный результат предварительный, т.к. большая доля отбракованных данных по f_{c1} могла исказить выводы.

В отличие от f_{c1} , поведение f_{c2} и f_{c3} слабо изучено и представляет большой интерес. Притом в данных случаях не имела место столь заметная по объему потеря данных, как это имело место с f_{c1} . Поэтому можно полагать, что полученные тренды в большой мере отражают реальность: $\beta_2 = 0.23\pm0.01$; $\beta_3 = 0.13\pm0.01$. Значения β_2 и особенно явно β_3 существенно ниже 1/3, что указывает на выраженное нарушение предположения о подобии. Это — важный результат работы.

обсуждение

Проведенное исследование развивает подход предварительного исследования [Гусев, Гусева, 2014]. Существенное продвижение связано с использованием вместо одиночной станции сети станций с применением уточненной модели потерь [Гусев, Гусева, 2016] и с использованием импедансных поправок, также в работе приведен новый набор сейсмограммного материала.

Следует коснуться нередких случаев, когда площадка в спектре A(f) не была точно горизонтальной (как на рис. 5, г). Причина подобных явлений понятна — это использование единой модели затухания для всех трасс приемник—источник, что является идеализацией. Для уверенности в главных результатах работы, а именно в реальности присутствия третьего излома в спектре и в реалистичности оценок f_{c3} главное — это отсутствие систематической недооценки потерь. В таком случае вместо приблизительно горизонтальных получались бы систематически наклонные (с уклоном вправо) площадки в спектрах A(f). Данной тенденции не наблюдалось: отмечались нерезко выраженные наклоны обоих знаков. Можно поэтому полагать, что основная часть полученных в работе оценок f_{c3} не несет существенных систематических искажений.

В работе [Aki, 1988] приведена сводка оценок показателей β_2 и β_3 для других регионов. Там отмечено, что значение β_2 обычно близко к 0.17, что сопоставимо с нашей оценкой 0.23. Для β_3 оценки по литературе менее уверенные, но ранняя оценка $\beta_3 = 0.12$ по [Faccioli, 1986] вполне подтверждается в настоящей работе (0.13). Оценки из [Гусев, Гусева, 2014] также сопоставимы. Таким образом, выявленные показатели скейлинга для f_{c2} и f_{c3} — в согласии с выводами более ранних работ.

Кратко перескажем изложенные в [Гусев, Гусева, 2016; Gusev, Guseva, 2016] предположения о возможной природе обнаруженных тенденций скейлинга. Значение f_{c2} соотносится с шириной фронта разрыва, формирующего площадку очага, в то время как значение f_{c1} соотносится с размером этой площадки. Отношение оценок β_2/β_1 порядка 0.5 может указывать на то, что по мере роста очага ширина фронта нарастает по известному стохастическому механизму типа «случайное блуждание с дрейфом».

Значение f_{c3} сопоставляется с верхней границей волночислового спектра поля прочности и(или) сброшенного напряжения на разломе. Данная граница может формироваться за счет износа поверхности бортов разлома. Износ ведет к абразии мелких выступов и исчезновению мелких деталей профиля, что подавляет излучение высоких частот. Медленный рост f_{c3} с M_0 может говорить о том, что более сильные землетрясения чаще возникают на более «зрелых» и более «изношенных» разломах.

В практическом аспекте результаты работы полезны для прояснения вопроса о смысле эмпирических оценок параметров к и (или) κ_0 . Хотя оценка этих параметров по акселерограммам стала стандартной в современной инженерной сейсмологии, но возможность частично очаговой природы этого параметра при этом обычно полностью игнорируется. Учет очагового вклада в спад наблюдаемого спектра ускорения сможет не только уточнить оценки для κ_0 , но также и исправить вероятные систематические искажения оценок к (или Q).

ЗАКЛЮЧЕНИЕ

Используя существенно доработанный подход к анализу данных, получен массовый материал оценок трех характерных частот очаговых спектров для землетрясений Восточной Камчатки. Этот подход позволил существенно продвинуться в демонстрации реальности малоизученного параметра « $f_{\rm max}$, управляемая очагом», который обозначили f_{c3} — третья корнер-частота. Параллельно изучали две другие корнер-частоты f_{c1} и f_{c2} .

Удалось подтвердить ряд ранее опубликованных предварительных выводов, полученных в той же зоне по материалам одиночной станции и другому набору записей. Снова обнаружено массовое присутствие третьего излома в очаговых спектрах; снова оказалось, что обычный закон подобия очаговых спектров ($\lg f_c = 1/3 \lg M_0 + \text{const}$) не выполняется ни для f_{c2} , ни для f_{c3} , но приблизительно приемлем для f_{c1} .

Результаты работы существенно дополняют наши представления о свойствах очагов землетрясений сейсмоопасного региона Камчатки. Обнаруженный факт обычного присутствия верхнего среза очагового спектра важен для задач инженерной сейсмологии. Реальность f_{c3} следует иметь в виду и при оценивании станционного параметра κ_0 , и при оценках затухания амплитуд с расстоянием. С другой стороны, аккуратная прогнозная оценка параметров возможных сильных движений должна учитывать f_{c3} как один из параметров, определяющих очаговый спектр разрушительного землетрясения и, таким образом, его эффект на площадке.

Исследование выполнено за счет гранта Российского научного фонда №14-17-00621 в Камчатском филиале ФИЦ ЕГС РАН.

СПИСОК ЛИТЕРАТУРЫ

Абубакиров И.Р. Оценка характеристик затухания поперечных волн в литосфере Камчатки по наблюдениям цифровой широкополосной станции «Петропавловск» // Физика Земли, 2005, №10, с. 46—58.

Гусев А.А., Гусева Е.М. Скейлинговые свойства характерных частот очаговых спектров землетрясений Камчатки // ДАН, 2014, т. 458, №1, с. 88—91.

Гусев А.А., Гусева Е.М. Оценка затухания поперечных волн в среде вблизи ст. «Петропавловск», Камчатка, по спаду спектра // Физика Земли, 2016, № 4, с. 35—51.

Гусев А.А., Гусева Е.М., Павлов В.М. Моделирование движения грунта при Петропавловском землетрясении 24.11.1971 (M = 7.6) // Физика Земли, 2009, № 5, с. 29—38.

Чебров В.Н., Дрознин Д.В., Кугаенко Ю.А., Левина В.И., Сенюков С.Л., Сергеев В.А., Шевченко Ю.В., Ящук В.В. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология, 2013, № 1, с. 18—40.

Abubakirov I., Gusev A. Estimation of scattering properties of lithosphere of Kamchatka based on Monte-Carlo simulation of record envelope of a near earthquake // Phys. Earth Planet. Inter., 1990, v. 64, p. 52—67.

Aki K. Scaling law of seismic spectrum // J. Geophys. Res., 1967, v. 72, p. 1217–1231.

Aki K. Physical theory of earthquakes // Seismic hazard in Mediterranean region. Kluwer Academic Publishers, 1988, p. 3-33.

Anderson J., Hough S. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies // Bull. Seismol. Soc. Amer., 1984, v. 74, p. 1969—1993.

Boore D. Simulation of ground motion using the stochastic method // Pure Appl. Geophys., 2003, v. 160, p. 635—676.

Brune J. Tectonic stress and the spectra of seismic shear waves from earthquakes // J. Geophys. Res., 1970, v. 75, p. 4997—5009.

Faccioli E. A study of strong motions from Italy and Yugoslavia in terms of gross source properties // Geophys., Monograph 37, 1986, Maurice Ewing Series 6, p. 297—309.

Gusev A. Descriptive statistical model of earthquake source radiation to an estimation of short-period strong motion // Geophys. J. Royal Astr. Soc., 1983, v. 74, p. 787—808.

Gusev A. High-frequency radiation from an earthquake fault: a review and a hypothesis of fractal rupture front geometry // Pure Appl. Geophys., 2012, v. 170, p. 65–93.

Gusev A.A., Guseva E.M. Source spectra of near Kamchatka earthquakes: recovering them from *S*-wave spectra, and determination of scaling for three corner frequencies // Pure Appl. Geophys., 2016, v. 173, p. 1539—1557.

Hanks T. f_{max} // Bull. Seismol. Soc. Amer., 1982, v. 72, p. 1867—1879.

Nakamura Y. A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface // QR RTRI, 1989, v. 30, p. 25—33.

Papageorgiou A., Aki K. A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. 1. Description of the model // Bull. Seismol. Soc. Amer., 1983, v. 73, p. 693—722.

Pavlenko O. Simulation of ground motion from strong earthquakes of Kamchatka region (1992—1993) at rock and soil sites // Pure Appl. Geophys., 2013, v. 170, № 4, p. 571—595.

Purvance M., Anderson J. A comprehensive study of the observed spectral decay in strong-motion accelerations recorded in Guerrero, Mexico // Bull. Seismol. Soc. Amer., 2003, v. 93, p. 600–611.

Рекомендована к печати 20 октября 2016 г., В.С. Селезневым

Поступила в редакцию 3 июня 2016 г.