УДК 550.34

СКЕЙЛИНГОВЫЕ СВОЙСТВА ХАРАКТЕРНЫХ ЧАСТОТ ОЧАГОВЫХ СПЕКТРОВ ЗЕМЛЕТРЯСЕНИЙ КАМЧАТКИ

© 2014 г. А.А. Гусев, Е.М. Гусева

Представлено академиком Е.И. Гордеевым 11.03.2014 г.

Поступило 17.03.2014 г.

DOI: 10.7868/S0869565214250185

Сейсмограммы – основной источник информации об очаговом процессе землетрясения. Волновая форма сейсмограммы смещения в объемной волне отражает временную функцию очага (ВФО), но с определенными амплитудно-фазовыми искажениями. Амплитудные искажения из-за потерь на трассе распространения учитываются относительно просто. Фазовые искажения скомпенсировать затруднительно. Поэтому удобно вместо ВФО изучать ее амплитудный спектр - "очаговый спектр" землетрясения (ОСЗ). По опыту исследований эмпирические OC3 не содержат выраженных пиков, поэтому амплитудные спектры можно сглаживать, что стабилизирует оценки. Стандартной моделью OC3 по [1, 2] является модель " ω^{-2} ", включающая плоский участок при низких частотах $f(\sim f^0)$ и убывание по f^{-2} на высоких частотах (ВЧ). Эти участки разделены загибом вблизи характерной (корнер) частоты f_{c1} (рис. 1).

Большой интерес представляет изучение скейлинга (обобщенного подобия) ОСЗ, так как характер скейлинга несет важнейшую информацию о свойствах очагов землетрясений. Скейлинг для f_{c1} хорошо изучен и часто близок к $f_{c1} \sim M_0^{-1/3}$, где M_0 – сейсмический момент землетрясения. Этот род скейлинга соответствует предположению о геометрическом и кинематическом подобии очагов разного размера; при этом $M_0 \sim L^3 \sim T^3 \sim f_{cl}^{-3}$, где L – размер очага, а T – длительность очагового процесса. Использование именно М₀ как базового масштабного параметра связано с тем, что М₀ и определяемая им моментная магнитуда

Российской Академии наук,

Камчатский филиал Геофизической службы

Российской Академии наук,

Петропавловск-Камчатский

 $M_w = 2/3 \lg M_0 [дин \cdot см] - 10.7$ — основные в сейсмологии и наиболее устойчиво определяемые параметры очага.

В [2] отмечено, что упомянутый загиб спектра может расщепляться на два с корнер-частотами f_{c1} $u f_{c2}$, между которыми имеется участок ОСЗ с промежуточным трендом, близким к f^{-1} (рис. 1). В [3] построена эмпирическая модель скейлинга ОСЗ и обнаружено, что для основной массы очагов такой промежуточный участок существует, причем скейлинг для f_{c2} качественно отличается от такового для f_{c1} . Согласно [4], по литературным данным разного качества, $f_{c2} \sim f_{c1}^{0.5-0.7}$.

От ВФО можно перейти к ее второй производной и к ее спектру – очаговому спектру по ускорению (ОСЗУ). Ход ОСЗУ в модели " ω^{-2} " таков: рост по f^2 ниже f_{c1} и площадка выше f_{c1} . В эмпирических спектрах обнаруживается верхний срез спектра ускорения ($f_{\rm max}$), его обычно приписывают потерям на трассе распространения волны. Но такой срез в ряде случаев обнаруживали и в спектрах, исправленных на потери на трассе. В [3, 5] сделано предположение, что этот срез, далее обо-

Рис. 1. Схема скейлинга очаговых спектров по общепринятой модели ω^{-2} (слева) и по развиваемым представлениям (справа).

Институт вулканологии и сейсмологии

Дальневосточного отделения

Петропавловск-Камчатский

Рис. 2. Пример обработки данных. Вверху – исходные записи горизонтальных компонент ускорения (масштаб по вертикали условный); помечен интервал, по которому находили амплитудные спектры *S*-волны. Внизу спектры D(f), V(f) и A(f), приведенные к r = 1 км. Спектры даны в двух вариантах: исходные (нижняя кривая) и исправленные за поглощение (верхняя кривая). В нижней части графиков – соответствующие спектры шума (пунктир). Серая ломаная аппроксимирует наблюденный спектр.

значаемый f_{c3} , определяется очагом. При f_{c3} спад ОСЗ переключается с тренда f^{-2} на приблизительно f^{-3} , а ход ОСЗУ – с f^0 на f^{-1} .

В современной сейсмологической литературе существование f_{c2} нередко признается, но нередко и замалчивается. Существование f_{c3} пока в основном не признано. Свойства скейлинга f_{c2} мало изучены, а относительно f_{c3} даже само наличие скейлинга четко не установлено. В работе предпринята попытка прояснить данные вопросы, изучая спектры *S*-волн местных землетрясений Камчатки.

Основные результаты работы следующие:

в очаговых спектрах обнаруживается несколько характерных (корнер) частот f_{c1} , f_{c2} и f_{c3} , где спектральный тренд меняется от $f^0 \kappa f^{-1}$, от $f^{-1} \kappa$ f^{-2} и от $f^{-2} \kappa f^{-3}$ соответственно; хотя в ряде случаев $f_{c1} \approx f_{c2}$, что согласуется с обычной спектральной моделью " ω^{-2} ", основная часть спектров имеет более сложный характер;

для большей части изученных землетрясений имеется верхний срез очагового спектра ускорений, т.е. наблюдается частота f_{c3} ; это важный факт, так как само существование f_{c3} не признается в основной массе сейсмологической литературы;

для f_{c1} наблюдаемый скейлинг согласуется с обычной гипотезой подобия и близок к $f_{c1} \sim M_0^{-1/3}$; для f_{c2} скейлинг установлен и близок к $f_{c2} \sim$

~ $M_0^{-0.17}$ ~ $f_{c1}^{0.5}$, что указывает на выраженное нарушение подобия; для f_{c3} скейлинг также установлен и близок к f_{c3} ~ $M_0^{-0.08}$ ~ $f_{c1}^{0.25}$, что еще резче нарушает подобие.

Для установления формы, а затем и характерных частот очагового спектра ответственным этапом является компенсация частотно-зависимого затухания на трассе распространения сигнала. В [6] для среды вблизи РЕТ получена следующая оценка параметров затухания *S*-волн: $\kappa_0 = 0.016$ с, $Q(f) = Q_0 f^{0.42}$ выше 1 Гц; $Q(f) = Q_0$ ниже 1 Гц. Параметр добротности Q_0 существенно зависит от гипоцентрального расстояния *r*; используемое значение Q_0 вычисляется по эмпирической формуле

$$Q_0(r) = 165 \left(0.52 + \frac{0.48r}{100} \right)$$

Использовано более 400 записей землетрясений Камчатки с магнитудами $M_L = 4-6.5(K^{\Phi 68} =$ = 9.5–14), при r = 80-220 км. Записи с частотой опроса 80 Гц получены в 1993–2005 гг. на сейсмической станции "Петропавловск" (РЕТ) цифровым каналом: акселерометр FBA-23 – регистратор "Quanterra". Амплитудные спектры записей в выбранном интервале *S*-волн вычислялись с использованием функции окна, затем осреднялись по двум горизонтальным каналам и по отсчетам спектра в пределах полосы шириной 0.1 декады (1/3 октавы) (рис. 2). По полученным спектрам

Рис. 3. Примеры спектров A(f) (a) и V(f) (б, в), иллюстрирующие характерные случаи поведения спектров.

ускорения A(f) (отражает ОСЗУ) находили спектры скорости V(f) и смещения D(f) (непосредственно отражает ОСЗ). По кривым спектров определяли модельную аппроксимацию в виде кусочно-степенного тренда. Близкая к оптимальной аппроксимация формы спектра подбирается интерактивно и позволяет оценить корнер-частоты спектра. Рабочий диапазон частот ограничен: со стороны низких частот — обычно встречающимся всплеском амплитуды в области 0.2—0.3 Гц, связанным с дополнительным вкладом в сигнал от поверхностных волн, с ВЧ-стороны — зоной с недопустимо низким отношением сигнал/шум (рис. 2).

Для контроля корректности поправок на поглощение воспользовались тем фактом, что в заметной части случаев корнер-частота f_{c3} не наблюдаема даже при достаточно высоком уровне сигнала: либо f_{c3} локализована правее верхней границы рабочей полосы (30 Гц или ниже), либо, возможно, вовсе не существует. В таких случаях можно полагать, что справедлива стандартная ВЧ-асимптотика спектров по модели " ω^{-2} ": ОСЗ ~f⁻², ОСЗУ – постоянный (плоский). Тот факт, что после коррекции поглощения нередко обнаруживаются примерно плоские на ВЧ-спектры A(f) (см. пример на рис. 3а), а случаи с существенным ростом A(f) на ВЧ не встречаются, подтверждает, что поправки на поглощение приемлемы в первом приближении и не должны вести к систематическим ошибкам в оценках, в первую очередь, в отношении f_{c3} , когда таковая наблюдается. Далее перейдем к содержательному анализу данных.

Первый вопрос — реальна ли f_{c2} . В этом случае спектры V(f) должны иметь плоский участок в области максимума. Оказалось, что среди изучен-

ных спектров имеется немало случаев, когда присутствует выраженный широкий плоский максимум V(f); в таких случаях наличие двух отдельных изгибов спектра при $f = f_{c1}$ и при $f = f_{c2}$ несомненно (см. пример на рис. 3б). Однако на многих спектрах виден лишь неширокий пик, так что f_{c1} и f_{c2} приблизительно совпадают; в этих случаях спектр следует модели " ω^{-2} " (см. пример на рис. 3в). Имеется также много промежуточных случаев (см. пример на рис. 2).

Второй вопрос — реальна ли f_{c3} . В этом случае спектры A(f) должны иметь выраженный верхний срез. Во многих случаях такой срез действительно наблюдается (см. пример на рис. 2). С учетом определенного разброса величины поглощения между трассами от разных очагов оценки f_{c3} , превышающие 18 Гц, считались ненадежными. Такие данные попадали в категорию $f_{c3} > 18$ Гц, причем в эту же категорию включали и случаи, когда f_{c3} выделить не удается (на спектре A(f)не обнаруживается ясный загиб вниз).

Скейлинг найденных оценок f_{c1} , f_{c2} и f_{c3} , выражаемый соотношением $f_{ci} \sim M_0^{\beta_i}$, i = 1, 2, 3, виден на рис. 4, где оценки f_{ci} изображены в функции магнитуды M_L , близкой к M_w . Видно, что данные по f_{c1} (рис. 4а) имеют заметный разброс и не противоречат гипотезе подобия ($\beta_1 \approx 1/3$). Аккуратная оценка показателя скейлинга β_i затруднительна из-за неуверенности в точном значении соотношения разброса данных рис. 4а по абсциссе и ординате. Для f_{c2} (рис. 4б), снова на фоне разброса, спад с магнитудой намного медленнее, чем для f_{c1} ; $\beta_2 \approx 0.17$, что указывает на приблизительное соотношение: $f_{c2} \sim f_{c1}^{0.5}$. Подобие явно нарушено.

Рис. 4. Найденные оценки корнер-частот f_{c1} (а), f_{c2} (б) и f_{c3} (в) в функции магнитуды. Серые штриховые линии соот-

ветствуют скейлингу $f_{ci} \sim M_0^{-1/3}$, ожидаемому в случае подобия очагов. Сплошные линии – оценки наблюдаемого скейлинга с помощью обычной регрессии; оценки показателей равны $\beta_1 = 0.22 \pm 0.016$ (a), $\beta_2 = 0.15 \pm 0.011$ (б) и $\beta_3 = 0.081 \pm 0.013$ (в). Для части данных на (в) имелись только оценки снизу (треугольники), поэтому для расчета тренда сначала вычислена скользящая медиана (серая кривая), по точкам которой затем рассчитана регрессия. Полученные оценки β_i заниженные, так как исходят из упрощенного предположения, что значения M_L – точные; реальная точность оценок β_i также завышена. Штриховые линии – аналогичные оценки скейлинга по ортогональной регрессии в предположении $\sigma^2(M_L) = 0.5\sigma^2(f_{ci})$; соответствующие более реалистические оценки показателей равны $\beta_1 = 0.32$ (a) и $\beta_2 = 0.17$ (б).

На рис. 4в показана зависимость $f_{c3}(M_L)$. Случаи категории $f_{c3} > 18$ Гц помечены треугольником при f = 18 Гц. Такое "клипирование" или "винзоризация" не мешает заметить тенденцию к падению f_{c3} с магнитудой. Чтобы выявить ее уверенно, вычислили медианы данных $f_{c3}(M_L)$ в скользящем окне, на значения которых клипирование не оказывает влияния, пока им затронуто менее 50% данных в пределах окна. Регрессия по медианам дала оценку $\beta_3 = 0.08$; это примерно соответствует связи $f_{c3} \sim f_{c1}^{0.25}$, так что для f_{c3} подобие нарушается еще резче, чем для f_{c2} .

Итак, на материале сотен спектров удалось выявить наличие мало изученных характерных частот f_{c2} и f_{c3} и обнаружить явное отличие их скейлинга от такового для f_{c1} ; при этом показатели скейлинга для f_{c2} и f_{c3} также существенно различаются. Глубинными причинами отличий наблюдаемого скейлинга от ожидаемого в случае полного подобия очагов могут быть: для f_{c2} – расползание (уширение) фронта распространяющегося разрыва по стохастическому механизму, близкому к случайному блужданию (см. [4]); для f_{c3} – наличие в спектре неоднородностей на разломе верхней границы, положение которой зависит от магнитуды. Оценка $\beta_1 \approx 1/3$ говорит, что для размеров очагов изученной совокупности нет выраженного нарушения подобия. Этот факт указывает на относительную стабильность безразмерного очагового параметра "сброшенная деформация" и также представляет определенный интерес.

Работа частично поддержана Российским научным фондом, грант 14–17–00621.

СПИСОК ЛИТЕРАТУРЫ

- 1. Aki K. // J. Geophys. Res. 1967. V. 72. P. 1217-1231.
- Brune J.N. // J. Geophys. Res. 1970. V. 75. P. 4997– 5009.
- 3. *Gusev A.A.* // Geophys J. Roy. Astron. Soc. 1983. V. 74. P. 787–808.
- 4. *Gusev A.A.* // Pure and Appl. Geophys. 2013. V. 170. P. 65–93.
- Papageorgiou A.S., Aki K. // Bull. Seismol. Soc. Amer. 1983. V. 73. P. 693–722.
- 6. Гусев А.А., Гусева Е.М. Проблемы комплексного геофизического мониторинга Дальнего Востока России. Петропавловск-Камчатский: Геофизич. служба РАН, Камчат. филиал, 2013. С. 147–151.