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 The classical ω -2 model of earthquake source spectrum has strong empirical support; still, it has no 
consistent theoretical foundation. It is shown that one can explain ω -2 spectral behavior by involving 
a number of concepts regarding fault rupture: the fault asperity failure model of Das-Kostrov; the 
Andrews's concept, that the field of the stress drop over a fault is random fractal with amplitude 
spectrum of 1/k type; the running slip pulse rupture concept of Heaton; and the  hypothesis, that the 
distance of propagation of Rayleigh waves excited by a failing spot on a fault is determined by the 
width of the slip pulse strip that in related with the propagating rupture. It is also assumed that over 
its width, this strip is filled by tortuous, multiply connected rupture front with the geometry of a 
random fractal line (polyline). To simulate seismic waves, a kinematic numerical model is designed 
that incorporates the described features. It generates realistic two-corner spectra; at high frequency, 
acceleration spectra are flat.  The results enable one to explain properties of broad-band strong 
ground motion and to perform its practical simulation. 
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INTRODUCTION. In 1967 г Aki [1] found, that the signal of displacement in body waves from an 
earthquake source has high-frequency spectral asymptotic of the ω -2 kind; then Hanks and McGuire 
[2] have found out that this assumption allows one to model ground accelerations in the epicentral 
zone. The mechanism generating commonly observed spectra of the ω -2 kind remains a puzzle: it is 
interesting to solve it, and the result may be interesting for applications.  
 

THEORETICAL BASIS of MODEL. To study the problem at hand, a numerical model is 
constructed, based on the theory of asperity fault after Das and Kostrov [3, 4]. As a first step [3] 
they considered an infinite fault with zero friction, with a limited welded patch or “asperity”, loaded 
with shear. During the failure of the asperity, the rupture front propagates that sweeps its surface; 
distribution of stress drop ∆σ (x, y) is thus created. In this process, surface waves are generated that 
run along surfaces of the fault, and also body waves P and S. Velocity ),(, tuSH ξ∞

&  of SH wave in a 

far-field receiver at a point ξξξξ    = {ξ1, ξ2, ξ3} is 
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where dot above indicates d/dt; ),(, tuSH ξ∞  is  displacement signal, r = {x, y, 0} is a point of a source,  

rh = {xh, yh, 0} is hypocenter; R= | ξξξξ - rh|,  ρ is density, cS  is S-wave velocity, SH
F

ℜ  is the radiation 

pattern of SH waves for a force point source, Σ is the asperity patch, with characteristic size 2Rca«R,   
and element dS; δ (·) is delta-function. The “∞”superscript symbolizes the case of infinite fault. 
Qualitatively, ),(, tuSH ξ∞

 is a step (H (t)), smoothed by a window of duration Tc ≈ 2Rca/vr , where vr 
is the velocity of rupture front propagation, assumed to be close to cS.  Tc is close to the duration of 
rupture propagation. It is supposed that ∆σ (x, y)> 0, therefore the signal (1) is a unipolar pulse. The 
area of this pulse (equal to final wave displacement ),(, ∞∞ ξSHu ) is defined by integral "seismic 
force of a source”  
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For the amplitude of velocity signal within its duration Tс, based on (1, 2) one can derive an estimate 
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The model [3] has been developed further [4] for a fault with a frictionless region of finite 
size 2Rra. In this case Rayleigh waves do not run to infinity, but die away on the boundary of this 
region, where they are converted to body waves. Their contribution to far-field body wave creates an 
additional term to (1) with negative integral that accurately compensates the step-like behavior of 

),(, tuSH ξ∞ . In time, this term is lagged behind by the delay of, approximately, Tra=Rra/cR ≈ Rra/cS . 
As the result the displacement signal obtains the shape of unipolar pulse, common in seismology  
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where G(t) is a signal from an elementary radiator. Λ (·) is a unit-area window function with 
characteristic time Tra, thus G(t) it is an asymmetric one-sided pulse, with instant leading edge and 
with gradual trailing edge; its duration is close to (1-2) Tra. It is assumed further that G(t) is the same 
for all r. . In numerical calculations, the particular G(t) is set after [5]: 
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where Tdec =0.5Tra; G(t) =0 at t> Tdec. Therefore, the characteristic distance of decay of Rayleigh 
wave amplitude is assumed as Rdec =cRTdec.The body wave displacement pulse (4) with amplitude of 
the order AF0Tra /Tca and duration of  the order Tca has the integral close to AF0Tra = (A/cS) F0 Rra ≈ 
(A/cS) M0, where M0 ≈ F0Rra is the seismic moment of the source [4,5].  Formulas similar to (1-4) 
hold also for P and SV waves.  
 In [4] the case is considered when Rayleigh waves propagate away (up to a distance Rra ) 
from a single asperity of the size 2Rсa « 2Rra. In [5,6,7], these results were applied to the multiple-
asperity case. The case considered below is different (see Fig 1a). On one side, the propagation 
distance of Rayleigh waves, now denoted Rr, is thought to be much larger than fault spot size dS0.5 
that plays the role of  “asperity” (Rr » dS0.5). On another side, the earthquake source size 2Rс is 
assumed to be large as compared to Rr i.e., Rr « Rс, in difference with [5] . Shortly, dS0.5« Rr «Rс 
 To permit Rayleigh waves to propagate, a spot of size 2Rr around a radiator dS located at a 
current point r of the rupture must be of low cohesion. Just this condition is realized when slip pulse 
[8] passes through the neighborhood of r, and one can believe that the slip-pulse width l of [8]  is 
close to 2Rr. In terms of rise time Tr, 2Rr ≈ cS Tr; this assumption is critical for the present approach; 
further it is assumed that Rr/Rc = CH. 

As regards the ∆σ (x, y) function, it is assumed in [9], that it is self-similar stochastic random 
function with Fourier spectrum shape close to 1/k β with β ≈1 ; this hypothesis is generally supported 
by the results of inversions of the real sources, and is accepted in the following. The distribution law 
of ∆σ (x, y) is assumed lognormal, and the relative scatter of its values is defined through the 
coefficient of variation )),((/)),((( 5.0 yxyxCV σσσ ∆∆=∆ EVar . See Fig 1b for example. 

In almost all models of earthquake sources the shape of the running rupture front is assumed 
to be a smooth line. However an expressed geometrical complexity of fronts is a necessary condition 



 

Fig. 1 (a) A cartoon depicting an earthquake source on an area Σ of the size 2Rc. Indicated: hy - the 
hypocenter, RF - rupture front  , HF - healing front. NCH (no cohesion) is a patch on the fault, of the size 2Rr 

(dotted contour) where the propagation of Rayleigh waves radiated from dS is confined (the particular plotted 
patch corresponds to particular dS only!). Rupture front and healing front are not strictly defined entities, they 
are understood as boundaries of a strip where the actual, wiggling and fragmented, fractal front is localized. 
(b) - example random fields tfr (x, y) and ∆σ (x, y) on a specimen of the simulated source. Wiggling isolines 
depict positions of the fractal front each 1.4 s. Shades of gray code time: the later, the lighter. The bold line 
gives a particular example position of the front. Below an isotropic random field ∆σ (x, y) with a spectrum 
∝1/k is depicted; shade intensity reflects amplitude; maxima are darker. 

 
for formation of usually observed incoherence of high-frequency radiation from a source. As in  [10], 
it is assumed that the rupture front has fractal geometry and is a "lacy" polyline (with “islands” and 
“lakes”) that fills a strip of the width 2Rr. To form such a shape, the moment of failure tfr (·) at a 
point r = {x, y} is defined by the sum of two terms: 

 

tfr (x, y) =R (x, y) + S (x, y)       (6) 
 

Here R (x, y) is a stochastic function; it provides fragmented shape of the front at big k. In simulation, 
R (x, y) is a sample self-similar function, with spectrum ∝1/k δ and with the uniform distribution law 
in the interval [0 2Tr]. The S (x, y) term provides regular behavior of rupture, best seen at small k, it 
is taken as S (x, y) = |r - rh |/vr; rh is the hypocenter (providing the top of the cone t =S (x, y)). For 
more realistic appearance, slight long-wavelength perturbation is added to S(x,y). 
SIMULATION AND ITS RESULTS. The procedure of numerical calculation was coded as 
described above; it includes (the accepted values in parentheses): (a) the choice of: the size of a 
rectangular source  (38×19 km), time step dt (0.025 s) , distance step dx (0.075 km); vr (3.0 km/s); cS 
(3.5 km/s); the hypocenter position rh; (b) the setting of parameters: β (1.0), CH (0.06), CV∆σ (0.8), 
δ (1.4); (c) generation of sample random fields tfr (x, y) and ∆σ (x, y); (d) calculation of 

),(, tuSH ξ∞
& according to Equation 1 for a ray along normal to the fault (the present analysis is 

confined by this case); (e) calculation of ),( tuSH ξ ≡ u (t) based on Equation 4; (f) determination of 

normalized displacement spectrum )( fun  calculated from u (t)) as the amplitude of Fourier 

transform, smoothed at high frequencies, and normalized by division by М0 ; and also of the 
associated acceleration spectrum )( fun&& .  See typical results on Fig. 2. 



 

Fig. 2. Typical results of simulation. (a) - signals )(  и)(),(),( tutututu &&&&
∞ at the receiver. (b) - spectra 

)(  и)( fufu nn && , raw (on the left) and smoothed (on the right): 25 individual spectra (red) and their average 

(yellow). Gray lines - idealized spectra for the single-corner ω -2 model. The main corner-frequency fc is set as 
1/2π Trms, where Trms

2 is the second normalized central power moment for )(tu . 
 

DISCUSSION AND CONCLUSION. Looking at Fig 2а one can perceive that signals 
)(  и)(),( tututu &&& qualitatively agree with observed records of real earthquakes. On Fig. 2b one can 

see that the smoothed acceleration spectrum is flat, according to ω -2 model. Also, the well-expressed 
second corner-frequency fc2  is present (it however disappears at CH of around 0.1 and above). Both 
these features agree well with observations. The CH parameter controls the spectral shape to a large 
degree. At a given (M0 , L) combination, when the width l of the slip pulse is getting more narrow, 
acceleration spectral level increases, and fc2 increases as well. One can conclude in general that: 
(1) An internally consistent and theoretically well founded broad-band kinematic model of 
earthquake source is devised and realized numerically. It reproduces two most prominent features of 
HF source spectra: ω -2 spectral shape and second corner frequency  
(2) The developed simulation technique has a potential for simplified simulation of strong ground 
motion. To its advantage, this technique is capable to predict consistently the variability of radiation 
properties that occurs at a given (M0, L) combination.  
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