FRACTAL EARTHQUAKE SOURCE WITH SLIP PULSE GENERATES
ACCELERATION TIME HISTORIESWITH FLAT SPECTRA
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The classicatv>model of earthquake source spectrum has strongrieaipsupport; still, it has no
consistent theoretical foundation. It is shown e can explaim?spectral behavior by involving

a number of concepts regarding fault rupture: tndtfasperity failure model of Das-Kostrov; the
Andrews's concept, that the field of the stresgpdryeer a fault is random fractal with amplitude
spectrum of X type; the running slip pulse rupture concept oétda; and the hypothesis, that the
distance of propagation of Rayleigh waves excitgé lfailing spot on a fault is determined by the
width of the slip pulse strip that in related witte propagating rupture. It is also assumed that ov
its width, this strip is filled by tortuous, multjpconnected rupture front with the geometry of a
random fractal line (polyline). To simulate seismiaves, a kinematic numerical model is designed
that incorporates the described features. It géeer@alistic two-corner spectra; at high frequency
acceleration spectra are flat. The results enabk to explain properties of broad-band strong
ground motion and to perform its practical simwati

Keywords:earthquake source spectrum, fractal, stress &nogmatic, accelerogram, self-similar.

INTRODUCTION. In 1967 Aki [1] found, that the signal of displacementbady waves from an
earthquake source has high-frequency spectral a@sjimpf thew™ kind; then Hanks and McGuire
[2] have found out that this assumption allows tmenodel ground accelerations in the epicentral
zone. The mechanism generating commonly obsenecirspof thew™ kind remains a puzzle: it is
interesting to solve it, and the result may bergggng for applications.

THEORETICAL BASIS of MODEL. To study the problem &and, a numerical model is
constructed, based on the theory of asperity faftdr Das and Kostrov [3, 4]. As a first step [3]
they considered an infinite fault with zero frietiowith a limited welded patch or “asperity”, loade
with shear. During the failure of the asperity, thpture front propagates that sweeps its surface;
distribution of stress drodo (X, y) is thus created. In this process, surface wakege@nerated that
run along surfaces of the fault, and also body w&andS. Velocity u®"~ (¢,t) of SHwave in a
far-field receiver at a poirf={ &, &, &) is
SH

Or &)
4rp cgr
where dot above indicateigdt; u®™~ (¢,t) is displacement signal,= {x, y,0} is a point of a source,
rh = {Xn, Y O} is hypocenterR= | & - ry|, pis densitycs is Swave velocity, 03" is the radiation
pattern ofSHwaves for dorce point sourcey is the asperity patch, with characteristic SiRg.@R,
and elementdS J(:) is delta-function. Theo$"superscript symbolizes the case of infinite fault.
Qualitatively, us"= (&,t ) is a step i (t)), smoothed by a window of duratidg = 2R.4/V; , wherev,
is the velocity of rupture front propagation, assdnto be close tos. T is close to the duration of
rupture propagation. It is supposed that(x, y)> 0, therefore the signal (1) is a unipolar pulEee
area of this pulse (equal to final wave displacemefi” (¢, »)) is defined by integral "seismic
force of a source”

ushe (gt + R/ cg) = AjzAa(r),J(t ~rFlcs—t, (r)dS A=
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Fo = [ Ao(r)ds 2)
For the amplitude of velocity signal within its dtionT,, based on (1, 2) one can derive an estimate

st (E,t) = AR, /T, 3)

The model [3] has been developed further [4] fdawt with a frictionless region of finite
size R,. In this case Rayleigh waves do not run to infiniiut die away on the boundary of this
region, where they are converted to body wavesir Toatribution to far-field body wave creates an
additional term to (1) with negative integral tlecurately compensates the step-like behavior of

us"”(&,1). In time, this term is lagged behind by the desfyapproximately;T;s=Ria/Cr = Ra/Cs.
As the result the displacement signal obtains lizg@es of unipolar pulse, common in seismology

u'(&,t) = A Aa(r)G(t 1 /cg)dS= A(F, I T)T, 4
with  G(t) = H (t) - [A(H (t - s)ds 5)

where G(t) is a signal from an elementary radiatdr(-) is a unit-area window function with
characteristic timd,, thusG(t) it is an asymmetric one-sided pulse, with insteatling edge and
with gradual trailing edge; its duration is closq1-2)T,. It is assumed further théxt) is the same
for allr. . In numerical calculations, the particu@(t) is set after [5]:

G(t) =H(t)- 050+ cosmt/T,,.); t<T4. (6)

where Tgec =0.5T1,; G(t) =0 att> Tgee Therefore, the characteristic distance of dedaRayleigh
wave amplitude is assumedRg: =CrT4ec The body wave displacement pulse (4) with ampétatl
the orderAFoT 4 /Tca and duration of the ordék, has the integral close #FyT., = (A/Cs) FoRa~
(Alcs) Mo whereMo = FoR4 is the seismic moment of the source [4/Bprmulas similar to (1-4)
hold also forl® andSVwaves

In [4] the case is considered when Rayleigh warepagate away (up to a distariRg )
from a single asperity of the siz&R2 « 2Ra. In [5,6,7], these results were applied to thetipla-
asperity case. The case considered below is diffgisee Fig 1a). On one side, the propagation
distance of Rayleigh waves, now denokdis thought to be much larger than fault spot sige®
that plays the role of “asperityR(» dS). On another side, the earthquake source Skeis2
assumed to be large as compareR; toe., R « R., in difference with [5] . ShortlydS >« R «R.

To permit Rayleigh waves to propagate, a spoiza &R around a radiatadSlocated at a
current point of the rupture must be of low cohesion. Just tbisdition is realized when slip pulse
[8] passes through the neighborhood pand one can believe that the slip-pulse widdi [8] is
close to R.. In terms of rise tim&;, 2R = ¢s T,; this assumption is critical for the present apgtg
further it is assumed th&/R. = C;.

As regards the&lo (x, y) function, it is assumed in [9], that it is selfrflar stochastic random
function with Fourier spectrum shape close to”With B~1 ; this hypothesis is generally supported
by the results of inversions of the real sourced,ia accepted in the following. The distributiamvl
of Ao (x, y) is assumed lognormal, and the relative scatteitsofalues is defined through the

coefficient of variationCV,, = (Var(Ao(x, y))**/E(Aa(x,y )) See Fig 1b for example.

In almost all models of earthquake sources theesbéphe running rupture front is assumed
to be a smooth line. However an expressed georaktamplexity of fronts is a necessary condition
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Fig. 1 (a) A cartoon depicting an earthquake souwnmgean area& of the size R.. Indicated:hy - the
hypocenter, RF - rupture front , HF - healing frd#CH (no cohesion) is a patch on the fault, ef sire R
(dotted contour) where the propagation of Rayleiglves radiated frordSis confined (the particular plotted
patch corresponds to particu#®only!). Rupture front and healing front are notcily defined entities, they
are understood as boundaries of a strip wheredfualawiggling and fragmented, fractal front isdtized.
(b) - example random fields (x, y) and4o (X, y) on a specimen of the simulated source. Wigglgaiiries
depict positions of the fractal front each 1.4 Isa&s of gray code time: the later, the lightere Bhld line
gives a particular example position of the froneldv an isotropic random fieldo (x, y) with a spectrum
O1/k is depicted; shade intensity reflects amplitudaxima are darker.

for formation of usually observed incoherence ghkirequency radiation from a source. As in [10],
it is assumed that the rupture front has fractahgetry and is a "lacy" polyline (with “islands” and
“lakes”) that fills a strip of the widthR. To form such a shape, the moment of failigré) at a

pointr = {x, y} is defined by the sum of two terms:

tfr (X1 Y) =R (X! Y) + S(X1 y) (6)

HereR (X, y) is a stochastic function; it provides fragmengbdpe of the front at big In simulation,

R (x, y) is a sample self-similar function, with spectritvk °and with the uniform distribution law

in the interval [0 Z;]. The S (X, y) term provides regular behavior of rupture, besinsat smalk, it

is taken asS (X, Y) = I - rn|M; rnis the hypocenter (providing the top of the corss (X, y)). For
more realistic appearance, slight long-wavelengttiyobation is added t§x,y).

SIMULATION AND ITS RESULTS. The procedure of numeal calculation was coded as
described above; it includes (the accepted valngzarentheses): (a) the choice of: the size of a
rectangular source (3&9 km), time steplt (0.025 s) , distance step (0.075 km);v; (3.0 km/s)cs

(3.5 km/s); the hypocenter positiog (b) the setting of paramete8:(1.0), C, (0.06),CV,, (0.8),
0(1.4); (c) generation of sample random fielgs(x, y) and do(x, y); (d) calculation of

us"” (&,t) according to Equation 1 for a ray along normal e fault (the present analysis is
confined by this case); (e) calculationwt (&,t = )i (t) based on Equation 4; (f) determination of
normalized displacement spectrum(f calculated fromu (t)) as the amplitude of Fourier

transform, smoothed at high frequencies, and nazewlby division byM, ; and also of the
associated acceleration spectruptf . See typical results on Fig. 2.
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Fig. 2. Typical results of simulation. (a) - signail”(t), u(t), u(t) u U(t) at the receiver. (b) - spectra
u,(f) m U,(f), raw (on the left) and smoothed (on the right)irgSvidual spectra (red) and their average

(yellow). Gray lines - idealized spectra for thegsé-cornerw™?model. The main corner-frequenfyis set as
1/27T, s, WhereT,,¢ is the second normalized central power momentifty .

DISCUSSION AND CONCLUSION. Looking at Fig a2one can perceive that signals
u(t), u(t) = (t) qualitatively agree with observed records of reatlejuakes. On Fig. 2b one can

see that the smoothed acceleration spectrum jsaftabrding taw?model. Also, the well-expressed
second corner-frequendy is present (it however disappearsCatof around 0.1 and above). Both
these features agree well with observations. Gh@arameter controls the spectral shape to a large
degree. At a givenM , L) combination, when the widthof the slip pulse is getting more narrow,
acceleration spectral level increases, fagnohcreases as well. One can conclude in general tha

(1) An internally consistent and theoretically wdunded broad-band kinematic model of
earthquake source is devised and realized numigrittaleproduces two most prominent features of
HF source spectrav?spectral shape and second corner frequency

(2) The developed simulation technique has a piafefar simplified simulation of strong ground
motion. To its advantage, this technique is capablaedict consistently the variability of radati
properties that occurs at a givémy( L) combination.
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