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Introduction 
 

Is the temporal structure of the sequence of volcanic eruptions uniform/Poissonian, clustered/episodic or 
cyclic/periodic? This question is interesting in itself, and crucial for understanding the impact of volcanoes on 
human habitat and climate. Over the geological time scale, the temporal character of volcanism is known to 
be non-uniform, episodic for such processes as ocean ridge volcanism, hot spot volcanism, explosive 
volcanism in island arcs (Sigurdsson, 2000), and trap (areal basalt) volcanism (Makarenko 1982). With 
respect to island arcs, this episodic style was established, on the basis of the study of volcanic ash layers in 
ocean-bottom boreholes (Kennet and others. 1977; Rea and Scheidegger 1979: Cambray and Cadet, 1996; 
Prueher and Rea, 2001). However, these studies presented only qualitative analysis. More formal description 
for the episodic temporal structure of volcanic (or, rather intrusive) processes was proposed was recently 
suggested by Pelletier (1999). He found that the actual episodicity in formation of intrusions is far from being 
completely “wild”: when treated as random objects, intrusions are distributed in time (moreover, in space-
time) in a statistically self-similar manner. The results of Pelletier confirm the general idea of an episodic 
behavior, and suggest that the episodicity of volcanic process may be generally (or typically) self-similar. For 
historic time scales, indications of a statistically self-similar or fractal behavior was found by DuBois and 
Cheminee (1991) for eruptions of basaltic volcanoes; and by Godano and Civetta (1996) for Etna; similar 
style was deduced by Chouet and Shaw (1991) for the burst-like behavior of a developing eruption. On the 
other side, many studies (e.g. Wickman, 1966; Ho and others, 1991; Jones and others, 1999) either assume or 
try to prove that eruptions of a particular volcanic center or of an area behave in another way: purely 
randomly (as a Poisson process) or with periodic tendency, and not as episodes. 
 

Data and eruption size distribution 
 

We analyze the temporal structure of the sequence of largest 
(volume V ≥ 0.5 km3) explosive eruptions on Kamchatka in 
Holocene (for the last 10000 years) (Gusev and others, 2003). 
Our catalogue includes 29 events; most of them were revealed 
and investigated during long-term tephrochronological studies 
and dated by the radiocarbon method. For each of 16 eruptive 
centers, the relative size of maximum eruption is shown in Figure 
1.The catalog it is presumably complete for eruptions with 
volumes of products exceeding 0.6-0.8 km3. The high level of 
completeness is confirmed by the good fit of the corresponding 
size distribution by the hyperbolic/Pareto law, with the value of 
the exponent b = 0.65 (Fig. 2). 
 

Time sequence and its renewal model 
 
The temporal structure of the catalogue is seen in Figure 3. A 
visual inspection of the temporal sequence makes an impression 
that the moments of eruptions form tight groups or clusters. To 
verify this apparent tendency in a formal manner, we depart from 
the renewal process model. For this purpose we approximated 
the distribution of intervals ∆t between the successive events by 
the Weibull law. On Figure 4A, the empirical cumulative 
distribution function   P(∆t′>∆t)   is plotted on the Weibull law 



 
 

Figure 2. A: Non-normalized complementary cumulative distribution function of volumes of products 
of eruptions (the number of events with volume V′>V vs. V). B: Same data represented as a histogram. 
Approximations by straight lines are good, indicating that the assumption of hyperbolic/Pareto 
distribution law is acceptable. 
 

 

 
 
Figure 3. The temporal sequence of Holocene explosive eruptions on Kamchatka. Above: volumes V of 
eruptions, km3. For visual clarity, the values of V 0.5 are plotted. Below: same data shown as the total 
volume of products accumulated up to a particular date. 
 

 
 

Figure 4. Plots illustrating clustering for the dates of eruptions. A: delays between successive events 
shown as a cumulative plot on the Weibull law probability paper. B: correlation integral as a function 
of an inter-event delay d, yr; the range of delays 100-10000 years is used for determination of the slope 
giving the estimate of correlation dimension near to unity. C: same as B, but for the range of delays 
100-800 years; band-limited fractal behavior is seen. 



probability paper. The graph is nearly linear, indicating that the Weibull law hypothesis is applicable. The 
slope of the straight line yields an estimate for the parameter of the Weibull law γ = 0.73 < 1, indicating the 
tendency of dates to clustering. The null hypothesis γ = 1 (that specifies Poissonian, "purely random" process) 
is rejected at the level of statistical significance equal to Q =7 %. With as few as 28 intervals, we consider this 
result as an indication of real clustering. We are mostly interested whether the clustering has the self-similar 
features. Hence, we further checked the presence of such features employing three independent techniques. 
 

Correlation integral approach 
 
The first approach used was to estimate the correlation dimension Dc of the set of points (that is, of dates of 
events on the time axis) by means of empirical determination of correlation integral  
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where Np is the total number of possible pairs of points on time axis, dij=tj-ti is the delay between components 
of a pair with the numbers i and j ( j > i ), and N(dij<d) is the number of pairs with dij<d. To obtain unbiased 
estimate for C(d), a minor correction must be added to compensate for the fact that the data originate from a 
finite time interval and not from an infinite time axis. (A correction of this kind is the standard one in the 
procedure of estimation of correlation function.) For self-similar data, C(d) must follow the power law: 
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The Dc exponent here is the correlation dimension for a set of points on a line. Values Dc < 1 are indicative of 
self-similar clustering. The Poisson process is the boundary non-fractal case when C(d) ∝ d, and Dc = 1. To 
find the empirical estimate for Dc, we can fit the empirical C(d) function by a power law. 
 
 On Figures 4B and 4C, the empirical relationship C(d) is plotted in the log-log scale. The linear fit over the 
entire delay range d = 10-10000 years yields an estimate of correlation dimension Dc =0.98 ≈ 1, indicating the 
absence of self-similar behavior (Fig. 4B). But within the restricted delay range 25-800 years, the slope of the 
approximating line equals 0.71 (Fig. 4C); and the null hypothesis Dc = 1 (the Poisson process) is rejected at 
the level of a statistical significance Q =2.5 %. One can conclude that in this specific delay range, the self-
similar clustering is present, and it can be described by the a value of correlation dimension about 0.7. 
 
 
 

 
 
Figure 5. Plots illustrating self-similar properties of volcanic product output rate function. A: correlation 
integral for “weighted” points vs. delay d, yr; B: determination of the exponent H of the Hurst’s R/S 
method, for the range of time intervals 2500-10000 years (relative interval length from 0.25 to 1). The 
expected trend for the non-fractal case, with H=0.5, is shown by the dotted line. C: integrated power 
spectrum of the volcanic product output rate function, versus frequency. Good linear approximation of 
the data points indicates the acceptability of the hypothesis of the power law behavior of the power 
spectrum. The difference of the slope of this line from unity indicates the self-similar behavior of the 
process.  



In addition to clustering of dates, examining of Figure 3 suggests that the largest events additionally "attract" 
one another. To test this idea, the same method of correlation integral (in the relevant modification) was 
applied to the temporal structure of the product output rate of volcanic eruptions, that is to the sequence of 
variable-weight points, with the weight equal to the volume Vi of products of a given eruption (Fig. 5A). The 
modified correlation integral C now looks as )(dv
 

∑

∑
<=

∞
=

ij

ij

d
ij

dd
ij

v dw

dw

W
dWdC

all
)(

)(

)(
)()(  

 

where the cumulative number of pairs N(d<dij) is substituted by the cumulative number of weights W(d), and 
the contribution into W(d) from each event pair (i, j) with volumes Vi and Vj equals w(dij)= ViVj. The estimate 
of correlation dimension obtained in this way we denote Dcv. In this case, self-similar clustering can be 
revealed over the entire range of delays (excluding only smallest, inaccurately determined delays), and the 
estimate of Dcv equals 0.67. The null hypothesis “Dcv =1”, (clustering of volumes is lacking) is rejected at the 
level of statistical significance Q = 3.4 %. This result is indicative of the presence of self-similar (fractal) 
temporal structure.  
 
This structure is generated by a combined operation of two different, discernible phenomena. The first of 
them is the above-discussed common clustering of dates of events. The second phenomenon is the specific 
property of a temporal sequence of any variable-weight points that we call "ordinal clustering ". This kind of 
clustering is a property of the time-ordered list of eruptions (regardless to concrete dates), it is exhibited as the 
tendency of the largest eruptions (in contrast to smaller ones) to be the close neighbors in this list. The 
significance level for the hypothesis of the presence of ordinal clustering equals Q = 4.8 %.  
 

Rescaled range and spectral approaches 
 
In order to reveal fractal behavior in the data on volcanic product output rate (sequence of volumes), we also 
employed another popular technique, namely the rescaled range (R/S) method of Hurst (Fig. 5B). In our case 
this method is applicable only for the larger-delay range. The estimated value of the Hurst exponent is H = 
0.58.  It exceeds the value H = 0.5 for a non-fractal case, and the hypothesis “H>0.5” has the level of a 
statistical significance Q = 3,2 %. The presence of the contribution of ordinal clustering in forming the value 
H = 0.58 > 0,5 has the level of a statistical significance Q = 3.1 %. 
 
We estimated correlation dimension also by the spectral method. On Figure 5C, we plotted the integral over 
frequency for the estimate of power spectrum (that is, for the sum of 29 Dirac delta functions with weights 
equal to volumes of eruptions). For a white noise or Poisson process, the integral should behave as f 1, and any 
significant periodic tendency must be seen as a bump on the graph. As can be seen from the actual graph, the 
integrated spectrum is smooth, close to a power law, and grows as f 0.95. In  the “colored-noise” terms, the 
power spectrum of the volcanic product output rate is “pinkish”, with a slight but clear tendency to truly pink 
or flicker noise (whose integrated spectrum grows slowly, as loge(f)). The value of the exponent (α=0.95) is 
an estimate of correlation dimension by the spectral method. For the hypothesis “α<1”, the significance level 
is equal to Q= 6 %. For the hypothesis that ordinal clustering has made a contribution to this difference, the 
significance level is equal to Q = 4 %.  
 

Discussion 
 
Therefore, the reality of self-similar clustering or episodic behavior for the volcanic product output rate 
function is shown by three independent approaches. As for the value of correlation dimension Dcv parameter, 
one can note the difference between estimates obtained by correlation integral method (0.67) and by spectral 
method (0.95). The possibility of such a discrepancy is related to the fact that in the correlation integral 
approach, the contribution of large delays is dominating, whereas in the spectral approach, the dominating 
contribution is from high frequencies and thus of smaller delays. We do not consider this discrepancy as 
disturbing. A good match is obligatory only for really large samples, not for as small sequence size as 29.  
 



The successful test of the presence of ordinal clustering by three different methods suggests the reality of this 
unusual phenomenon. A limited manifestation of common clustering when analyzed separately means that the 
phenomenon of ordinal clustering makes the crucial contribution to the self-similar behavior of the volcanic 
product output rate. 
 
Both common clustering (for dates of events in time) and ordinal clustering (the tendency to enhanced 
proximity of largest events in the time-ordered event list) can be considered as two different manifestations of 
episodic behavior of volcanic process. And our results indicate more than mere presence of episodic tendency 
at some qualitative level. We observe self-similar, multiscale, fractal irregularity of volcanic product output 
rate for a territory of a size of some hundreds km, and for temporal scales 100-10000 years. This conclusion is 
in agreement with other observations of episodic behavior of volcanism, including both tendencies revealed in 
informal manner and direct indications of self-similar behavior. This last style was reported for a very wide 
range of temporal scales: hours, years and millions of years, and now is shown for hundreds to thousands of 
years. We believe that the self-similar episodic behavior (at difference with a Poisssonian one) represents a 
typical property of a sequence of eruptions within a volcanic area.  
 
From the point of view of the nature of the phenomenon, the multiscale episodicity of volcanic product rate 
from a volcanic area may be caused by some external forcing or perturbing factor or factors with a wide range 
of characteristic times. A list of such factors may include: (1) variations of glacial load; (2) variations of an 
elastic stress field (formed by earthquakes and aseismic irreversible Earth strains); (3) variations of relevant 
parameters of subduction, including (3a) relative plate velocity, (3b) the volume of sediments at the particular 
patch of the plate being subducted and (3c) the amount of bound water in oceanic lithosphere at the same 
patch; and also (4) the effects of a unsteady flow of fluid and/or of a silicate liquid from deep mantle. 
Alternatively, one may ascribe the self-similar behavior to a certain intrinsic spatially-temporal dynamic 
structure of deep “volcanic root” processes. Like turbulence or seismicity, this hypothetic structure can have 
multiscale, fractal character and generate a wide spectrum of characteristic times "on its own", irrespective of 
any external forcing.  
 

Conclusion 
 
By means of three different statistical techniques, a self-similar episodic or clustering behavior is revealed for 
the temporal structure of the Holocene volcanic activity on Kamchatka, or, more precisely, for the volcanic 
product rate function. A very significant cause of episodic behavior is the ordinal clustering, that is the 
tendency of the largest eruptions to be unusually close neighbors in the time-ordered event list. 
 
For more detailed exposition of a part of the presented results and discussion see: (Gusev and others, 2003). 
The research was supported by Russian Foundation for Basic Research through grants 03-05-64459 and 03-
05-64027. 
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