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SUMMARY
The vertical profile of effective turbidity under Kamchatka is reconstructed from
observations of distance-dependent broadening of the inchoherent pulse of high-
frequency body waves from small earthquakes, by means of a new approach and data
processing scheme developed in Paper I. The key ‘effective turbidity’ parameter, ge, used
is an immediate generalization of the common isotropic turbidity/scattering coefficient g.
Measurements of 200–600 onset-to-peak delays for P and S waves for five Kamchatka
stations are used for interpretation. The estimates based on these data correspond to
the 2–4 Hz frequency band. The inversion of data is performed in terms of the
parameters of two generic vertical effective turbidity structures: a piecewise-constant
profile (PCP) and truncated-inverse-power-law profile (TPLP), both used in several
variants. The variants of the inversions give consistent results, but also reveal rather
limited resolution, not permitting the recovery of detailed profiles or a comparison of
results among individual stations. The inversions indicate that the values of effective
turbidity decay from the surface down: within the depth interval h=0–50 km, the
decay is gradual; at greater depths it is much steeper, roughly following the inverse
cube law. The estimates of average effective mean free path le=1/ge are very close
for P and S waves: 50–60 km (±20 per cent) for the 0–20 km layer; 250–300 km
(±30 per cent) for the 20–80 km layer; and at h>60–80 km, le#100(h/40)−2–4 for
both P and S waves. The value of both the P- and the S-wave optical thickness (total
scattering loss) of the upper 200 km is about 0.75 (±25 per cent), and the lithospheric-
scattering contribution to t*

P
is estimated as 0.2 s at 1 Hz. The expected S-wave scatter-

ing loss agrees reasonably with the standard regional amplitude attenuation curve,
probably reflecting the secondary role of intrinsic loss at 3 Hz. The S-wave scattering
Q in the lithosphere of Kamchatka is estimated for f =1 Hz as 125, 205 and 255 for
hypocentral distances of shallow events of 30, 100 and 300 km, respectively.
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of scattering coefficient with depth (3h−2–3 ), but did not
INTRODUCTION

estimate any absolute values.
A promising approach for the study of scattering, andThere is a common understanding of the fast decay of the

especially of non-uniform scattering structure, is to use thescattering capability of the Earth medium with depth, based
broadening with distance of incoherent, noise-like high-on the analysis of teleseismic P waves (e.g. Aki 1973; Flatte
frequency body-wave pulses. The rate of pulse-width increase& Wu 1988), but little is known about the details of the
with distance can be inverted in terms of scattering parametersvertical distribution of scattering properties. Estimates of vertical
(Gusev & Lemzikov 1983, 1985; Sato 1989). Abubakirov &turbidity structure were proposed by Rautian et al. (1981),
Gusev (1990) found that, at a given hypocentral distance,who used regional S waves and codas. Gusev (1995) inverted
pulse broadening is weaker for greater source depths, directlydata on apparent coda-wave attenuation and recovered the

approximately inverse-power-law mode of decay of turbidity indicating the decay of scattering capability with depth.
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310 A. A. Gusev and I. R. Abubakirov

When analysing scattering properties of the Earth, it is con- an important generalization. We describe our data sets, and

venient to employ a single parameter that might jointly describe verify that the requirements needed for meaningful inversion
various scattering-related phenomena: forward scattering, are fulfilled. We then choose parametrizations for a turbidity
manifested in pulse broadening, back scattering, manifested profile. Two generic parametrizations are used in parallel:
in coda formation, and scattering energy loss. Fortunately, (1) a set of constant-ge layers over a constant-ge half-space,
such a parameter, namely effective turbidity ge , can indeed be and (2) a constant-ge layer overlying a half-space with inverse
introduced. It is in terms of this parameter that we will perform power law ge decay. Next the results of the inversions for a
the actual inversions below. In a companion paper (Gusev & number of data sets are analysed, first individually and then
Abubakirov 1999; hereafter Paper I) this point is discussed in as a whole, and average estimates for vertical profiles of ge
detail. Briefly, the ge value describes scattering loss and coda under Kamchatka are compiled. Finally we compare our
formation, just as the isotropic turbidity value g does in the results with previous studies of scattering and attenuation in
well-studied case of isotropic scattering; in addition, it describes Kamchatka.
pulse broadening, non-existent in that case. The effective mean

free path, le=1/ge , essentially coincides with the ‘isotropization
distance’ of Gusev & Lemzikov (1983, 1985); that is, the INVERSION ALGORITHM
distance where forward-scattered energy, after a number of

We review the key equations of Paper I which present the basisacts of forward scattering, is deflected by a cumulative angle
for inversion. Denote by tmj ( j=1, 2, …N) the jth observedof 1–2 rad from the initial direction of the unperturbed ray,
value of the body-wave onset-to-peak delay tm assumed to beand thus ‘forgets’ it, to propagate almost isotropically at
caused by forward scattering, and, by normalizing it by thelater times.
corresponding traveltime tdj , obtain modified data y

j
=tmj/tdjThe relationship between the effective turbidity of a medium

such that the variance of y
j
can be assumed to be approximatelyand the broadening of a pulse that propagates through it was

independent of distance. Let the theoretical expression thatderived by Williamson (1972) for the case of a uniformly
relates ymj to the vector of (unknown) parameters p={p

i
} ofscattering medium, low-angle scattering and Gaussian auto-

a particular parametric model be written as Z
j
(p). Thencorrelation of the inhomogeneity field. Bocharov (1988)

generalized this result for the non-uniform case. In Paper I,
Z
j
(p)+e

j
=ymj , (1)we developed a method for data analysis based on the appli-

cation of Bocharov’s formula; it represents an inversion of
where e

j
is the error, which combines data noise and modellayered turbidity structure based on linear least squares. We

inadequacy. Consider first the case of a model that consists ofalso analysed a few practical aspects of the application of the
a set of constant effective turbidity ge layers over constant-gegeneral approach to seismological data; in particularly, the
half-space. This model will be hereafter denoted as a piecewise-correctness of the low-angle approximation, the use of peak-
constant profile, or PCP. Let i=1, 2, …M−1 enumeratedelay observations instead of the pulse centroid of Bocharov’s
the layers counting from the surface down, and let i=Mformula, corrections for a realistic spatial spectrum of the
correspond to the lower half-space. Let m be the number ofinhomogeneity field, a potential bias produced by intrinsic
the layer that contains the source. For i=1, … , M, p

i
=gei .loss, and the effects of a non-spherical, double-dipole source

Let us introduce also the constant delay term tm0=p0=ge0radiation pattern. The latter problem has the potential for
associated with i=0.significant data distortion; hence we proposed an efficient

To find the particular form of Z
j
(p) we directly evaluaterobust estimation procedure aimed at the suppression of such

Bocharov’s integral formula (eq. 12 of Paper I) for the PCPdistortions. Finally, we tested the inversion procedure on
case. Let us omit the j subscript. Let s be the coordinate alongsynthetic data.
the unperturbed ray of total length S. The ray is calculatedBelow, we apply this general approach to the inversion
based on the known velocity structure. Let ge(s) be equalof the pulse-broadening data for body waves from local
to constants ge1 , ge2 , … geK within corresponding ray seg-Kamchatka earthquakes as expressed in the values of the
ments (0, s1 ), (s1 , s2 ), … , (s

m−1 , S) (assumed known from rayonset-to-peak delay time. These data contain limited amount

of information (they are rather noisy), and hence in our calculations). For this case, the cited formula yields
inversions we could use only simple models of the medium

(c/S2 )T �=ge0+ge1U(0, f
1
)with vertically varying scattering properties. The parameters

of such models will be estimated from the data sets of P and +ge2U(f
1
, f
2
)+…+gemU(f

m−1 , 1) , (2)
S waves of five seismic stations.

In a preliminary study, Gusev & Abubakirov (1996a) made where T � is the mean pulse delay along the given ray,
the first successful attempt to perform the inversion of vertical f

i
=s

i
/S, and

turbidity structure from pulse delays on the basis of Bocharov’s

formula. Compared to the approach of that paper, in the U(p, q)= ( p2/2−p3/3)− (q2/2−q3/3) . (3)
present work we introduce significant modifications: we use
realistic velocity structure, reject data from near-horizontal For the ray in question, s

i
, S and f

i
are known. To account

rays, and apply a robust estimation procedure based on for variable velocity, we simply set c=S/td in (2).
residual-dependent data weighting. This yielded a significant Now assuming tm�/T �=0.55=B (see Paper I), for
improvement in the quality and reliability of the parameters Z

j
(p)=tmj/tdj write

of non-uniform turbidity structure obtained in the inversion.
The structure of the paper is as follows. We review the data

Z
j
= ∑

M

i=0
a
ij
gei , (4)

processing procedure presented in detail in Paper I, and add
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where the coefficients a
ij

are

a
0j
=1/tdj ;

a
ij
=BSU(f

i−1 , f
i
) for i≤m ;

a
ij
=0 for m+1< i<M.

For N>M, N equations (4) represent an overdetermined
linear system, to be solved by least squares. Now denote the
a
ij

matrix as A, the Z
j
vector as Z, and the matrix of residual-

dependent weights (to be defined soon) as W, and then for the
least-squares estimate p∞ we obtain the standard result

p∞= (ATWA)−1ATWZ . (5)

In the practical implementation this result is recalculated

iteratively, with the diagonal W matrix adjusted based on
residuals of the previous iteration, until convergence is reached.
The starting state for W is the unity matrix, and the value of

the weight for the next iteration is calculated by the formula

w
jj
=w(dy

j
)=1/[(1+q( |dy

j
|/s)b] , (6)

where dy
j
is the residual of y

j
, and s2 is the weighted estimate

of the variance of e
j
, both obtained on the current iteration;

q and b are adjustable constants, set to q=2.3, b=4.
A further turbidity profile parametrization was also used, Figure 1. The region studied. Triangles: stations used in the data

consisting of a layer with constant ge over a half-space with analysis (seen clearly on the insert). The symbols denote epicentres
the inverse power-law ge decay: of events recorded at different stations; these records were used in

the study.

ge(h)=GG , 0<h<H ,

G(H/h)a , h>H ;
(7)

quite safely to the 2–5 Hz frequency band, or equivalently, to
it is denoted as the ‘truncated inverse power law’ profile the vicinity of the 3 Hz typical frequency.
(TPLP). The analogue of eq. (4) for this case is Let us now estimate the expected range of the constant term

tm0 for our data. Generally, it includes instrument-, source-
Z
j
=a

0j
ge0+a

1j
ge1 , (8)

and station-related delays. We estimate the first two contri-
where a

0j
=1/tdj , ge0=tm0 , ge1=G. The coefficient a

1j
is again butions here. The station terms is difficult to find a priori;

obtained by direct integration. Its expression is somewhat however, it may be assumed zero for a ‘good’ seismic station
lengthy, even for the simple ‘single layer over half-space’ (see discussion in Paper I). Given the value of the upper cut-
velocity structure assumed here, and it is given in Appendix A. off frequency of the instrument transfer function of about

15 Hz, the corresponding mean pulse delay is of the order of

0.04 s. The source-related pulse delay is about half the visual
DATA DESCRIPTION

signal period (typically 0.2–0.5 s) and can be estimated as
0.1–0.25 s. The total effect of the instrument filter and a sourceThe first stage of data analysis is to accumulate input obser-

vational data. For each station/body-wave type combination is about 0.15–0.30 s. The peak delay must be somewhat smaller
than the mean delay, and is assumed to be equal to 0.8 of theanalysed, we use the values of onset-to-peak delay time, tm for

a large number of small earthquakes. To measure tm values, mean delay, or 0.12–0.24 s. To constrain this parameter, we

will use the value of 0.18 s. Such a constraint will systematicallywe used records of local events of the five stations of the
regional Kamchatka network: SPN, PET, TOP, BER and KRI be applied later, because the information content of our data

does not permit independent estimation of constant station(Fig. 1). The instruments are three-component 1.2 s pendulums

of SM-3 type, combined with GB-IV type galvanometers of terms.
The measurements of tm were performed using hundreds of0.07 s period; they employ photographic recording of 2 mm s−1

speed. The system response is practically flat for displacement records from 1985–1995, on all three components, for P and
S wave groups. It is easy to identify peaks for both P and S,between 1 and 10 Hz. Body-wave groups of regional events

are relatively wide-band, and the typical visual frequency and the onset for P, but the case of the S-wave onset is more

complicated. It is not unusual for this onset to be emergent,varies somewhat among records. However, this frequency is
practically always inside the 1.5–6 Hz range, and typically is and for its reading not to be fully reliable. To understand the

importance of this problem, for 150 records we determined tm2–5 Hz. For KRI, the typical frequency is somewhat higher

(5–9 Hz). In a previous study (Abubakirov & Gusev 1990), it in two ways: based on the visual S onset, and based on its
expected arrival time, calculated using the traveltime tablewas found that, within the discussed frequency range, effective

turbidity estimates determined separately for the 1.5, 3, and from the known hypocentre and origin time. We found no

systematic errors. We performed effective turbidity inversion6 Hz bands of the multi-band ‘ChISS’ instruments of SPN and
PET vary only slightly. This permits us to use unfiltered of PCP type (see below) for both data sets; the layer effective

turbidity estimates calculated from each set differed bydisplacement data with confidence, and to ascribe our results
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5–10 per cent. On the basis of this test, we confine ourselves are almost lacking at small hypocentral distances. (This

problem is present for all the stations in varying degrees; itto tm values based on the visually identified onset only.
To exclude problems related to multiple-ray propagation, is inherent for island-arc type data where almost all events

are located within the rather narrow inclined Benioff zone—the incidence angle at the source was limited to <70°. Fig. 1

shows all the epicentres of the earthquakes used in the analysis; see Fig. 2.) For BER and KRI, data sets do not include
events at depths below 160 km; therefore, these stations are ofFig. 2 shows hypocentres on a cross-section across the island

arc; in both cases we show the P-wave data coverage. Fig. 3 secondary value.

To calculate rays, we first used the standard Kamchatkashows the distribution of individual data for S waves over
depth and epicentral distance and also on tm–hypocentral velocity profile: c

P
=4, 5.8, 6.7, 7.8 and 8.1 km s−1 for depth

intervals 0–5, 5–20, 20–35, 35–120 and 120+ km; c
S
=c

P
/1.73distance plane. P- and S-wave data coverage is similar. For

SPN, PET and TOP, data sets are larger and include a with the PCP model. However, we could not use such a
detailed profile with the TPLP model. For the sake of uni-proportion of rare events at depths 160–300 km, found by

extending the data search over additional years of the formity we used in both cases a simplified velocity profile with

c
P
=6 km s−1 over the 35 km crust and c

P
=7.8 km s−1 overcatalogue. Among these ‘better’ stations, data coverage over

distance is most even for SPN, and worst for TOP, where data the mantle. The differences between the results of inversion
based on the ‘accurate’ and ‘simplified’ velocity profiles were

estimated by comparison of two PCP inversions with similar
data sets; these differences were no more than 3 per cent and
considered negligible; thus for all further inversions we used

the ‘simplified’ velocity profile.

ANALYSIS OF APPLICABILITY OF THE
METHOD

Before performing the inversions proper, we must first verify
the applicability of Bocharov’s theory. The theory has been

developed for the case of the low-angle approximation, zero
intrinsic loss, and a spherically symmetric source radiation
pattern, whereas all these conditions are more or less violated,

and an analysis is necessary. Other possible problems (see
Paper I for the complete list) are not so critical as to deserve
detailed discussion, and will be referred to as necessary.

Low-angle approximation

For our data, the delay of a pulse peak is 1–10 s, to be
compared to propagation times of 10–40 s and greater. InFigure 2. Cross-section view of event hypocentres (symbols) and
other words, y

j
is typically below 0.1, and its rms value isstations (triangles) used, projected onto the vertical plane denoted aa

on the insert map of Fig. 1. about 0.03. Thus the low-angle approximation is valid.

Figure 3. Data coverage for S-wave data for five stations used, on depth versus epicentral distance plane (upper row) and on tm versus hypocentral

distance plane (lower row).
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suppression needs preliminary data analysis. Also, the data
Intrinsic loss effect

normalization by traveltime mentioned in relation to eq. (1)
needs experimental support. To understand these problems,To understand the importance of the possible biasing effect of

intrinsic loss on pulse broadening, we calculated it for the statistical structure of the data should be studied. However,

to do this reliably we need the results of a reasonable inversion,Williamson’s (1972) theoretical pulse shape. For f =3 Hz, we
assumed the realistic values of le=50–100 km, and of intrinsic and to perform such an inversion we must have a prior

understanding of the data statistics. This situation is notQ as Qi=350, [equal to coda Q (3 Hz) for Kamchatka, after

Abubakirov & Gusev (1990)]. For this case, the expected tm completely circular, however, because the weighting scheme
exemplified by (6) is not merely a workable trick: it is avalue decreases by at most 25 per cent at the considerably

large distance of 250 km, and the slope of the tm versus distance statistically well-founded procedure (Jeffreys 1961) and it works

automatically if the rather general initial assumption is valid,log–log relationship over the 50–250 km distance interval
changes from 2 to about 1.8. At a distance of 100 km, the that data is a mixture of low-variance and high-variance sub-

populations. For this reason, we can safely use the residualserror in tm is −8 per cent. However, these estimates are

unrealistically large. For a self-similar inhomogeneity field with resulting in some reliable inversion to illustrate the validity of
our assumptions regarding data structure.the properties found by Gusev & Abubakirov (1996b), the

actual pulse must have an onset-to-peak delay of about half To implement this idea, we carried out inversions for the

TPLP structure with fixed values of H=40 km and a=3,the value calculated for the Gaussian ACF case (the one for
which the Williamson’s shape function is relevant) for the same which are close to our final estimates obtained below. We

analyse the residuals combined from two inversions for stationsoptical distance. As the distortion introduced by intrinsic loss

increases in time, decreasing the delay by half will reduce this SPN and PET. The general data scatter can be seen in Fig. 4,
where tm versus traveltime and y versus traveltime data aredistortion by at least half as well. In addition, the Qi value of

350 was estimated in the framework of the model of uniformly depicted. First of all a large data scatter is apparent, with

absolute deviations of up to 10 s and more. After a morescattering medium and thus is much too low. The more realistic
estimate of Qi=1000–2000 (Dainty 1981; Gusev 1995) may detailed examination, it can be seen that there is a mixture of

two distributions: (1) a small-dispersion component, concen-be more adequate. The use of Qi=1000 would reduce the
error of the kind discussed to a completely negligible level. trated around zero, moderately asymmetrical and interpreted

as ‘regular errors’, and (2) a highly asymmetrical large-

dispersion component, interpreted as ‘outliers’ produced by
Regular and outlier components of data

near-nodal data. The robust inversion procedure that produced
the plotted residuals has essentially classified the data intoAs explained in Paper I, to perform a meaningful inversion

one must suppress the biasing effect of near-nodal arrivals: these two groups. The two horizontal lines on each plot are
approximate 1 per cent quantiles (q=2.3) of the ‘regular’they have small initial amplitudes and large onset-to-peak

delays whose origin is irrelevant to scattering. Planning this component approximated by the normal law. In both cases,

Figure 4. Inversion residuals combined for P-SPN and P-PET data sets, plotted versus traveltime. Lower plot: residuals of ‘normalized’ y values

actually used for inversion; upper plot: residuals of ‘raw’ tm values calculated within the same inversion. Data may be thought as a mix of ‘regular’

and ‘outlier’ components. Horizontal lines denote approximate bounds for the ‘regular’ component.
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the value of the variance s2 of the regular component was be seen that the P-wave data are much more contaminated
than the S-wave data; this agrees with the fact that the P-waveestimated from the data. The lines mark the points where the
radiation pattern of a double dipole has wider and deeperweighting function (6) used becomes lower than 0.5. Fig. 5
lows than that for S waves.shows the observed distributions of dy as a histogram. It can

Considering only the ‘regular’ component of Fig. 4, one may
suspect that its scatter increases with distance for tm and is
more stable for y, but this is far from evident. Fig. 6 shows
histograms for these residuals, drawn separately for small and
large traveltimes. For tm , the scatter of residuals evidently
increases with distance, whereas the y residuals are relatively
stable. This supports our choice of y and not tm as the input
data for inversion.

In Paper I we explained the large proportion of ‘outlier’
data by the effect of the double-dipole radiation pattern.
Compared to the theoretically analysed case of a spherical
radiation pattern, a station/component has in this case a
significant probability of being near to the nodal direction and
thus of having a negligible direct-wave amplitude. The peak
in such a case is formed by sideways leaking of wave energy
initially radiated in other directions (along curved rays), and
its delay, although intrinsically caused by scattering, has no
relation to the scattering-related broadening discussed here.
Whereas low-amplitude, delayed-peak arrivals are quite com-
monly observed near nodal planes at least for P waves, it
happens, unfortunately, to be very difficult to illustrate this
fact by examples from our data set. The reason is that the
Kamchatka network is rarefied (typically, 100–150 km between
instruments), so accurate nodal plane solutions exist only
when many reliable teleseismic signs are present. This means,Figure 5. The distributions of y residuals (upper plot: those of Fig. 4).
practically, that M>5.5–6. Such events usually have consider-The mixed nature of these distributions, consisting of a ‘regular’
able source-related durations and thus have been excludedcomponent (the asymmetric peak) and an ‘outlier’ component (the low

plateau at positive values, much stronger for P waves), is evident. from our analysis.

Figure 6. Histograms of residuals of tmj ( left column) and of y
j
(right column) from Fig. 4 for small (upper plots) and large ( lower plots) distances.

The values of standard deviation are calculated only within the horizontal lines of Fig. 4 and, approximately, characterize the ‘regular’ component

only. One can see the relatively stable scatter of y
j
as opposed to the increase of scatter of tmj with distance.
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When applying LS to data analysis one has to deter-
DATA ANALYSIS

mine, for each data set, the number of degrees of freedom/
independent parameters it can meaningfully provide. In regular

The choice of parametrization for model profiles and the
cases, one can use such strategies as, for example, Fisher F

outline of the data analysis procedure
statistics with respect to residual error variance, to determine
the actual number of degrees of freedom. Unfortunately, thisWe are now ready to perform data processing proper. This

needs, however, some preliminary planning. The final aim of standard approach cannot be immediately generalized for the

case of the residual-dependent weighting. For this reason, wethe station data processing is to estimate the vertical profile
of effective turbidity ge (h) under the seismic station. This is used a more primitive approach, checking the sign and relative

error (measured by coefficient of variation CV; that is the rmsattained through the following stages: (1) specify the structure

of a ge model profile to search for, and introduce the vector p error of a value divided by itself ) of layer ge estimates, and
considering the result unreliable when negative ge estimatesof unknown parameters for this model; (2) for each event,

calculate the seismic ray in a known velocity structure, and and/or large CV appear.

In our approach, the choice of layer boundaries is important.check whether each datum corresponds to an uprising ray,
and not to a nearly horizontal or reflected ray; (3) perform There are several lines of reasoning that determined our final

set of boundaries. First, because of the general decay ofthe inversion proper. Generally speaking, we would prefer to

obtain as detailed a ge (h) as possible. In practice, however, turbidity with depth, it is unreasonable to divide the whole
300 km layer covered by data into parts of comparable size,we must represent ge(h) by a finite number of parameters.

Unfortunately, as we will soon see, the real resolution permitted say 150 and 150 km for two layers, because the contribution

of the deeper layer is expected to be relatively very small andby the data is rather limited, and can be expressed by only a
small number of independent unknown parameters (degrees of thus hardly resolvable. It seems better to divide the whole depth

range into layers with, roughly, comparable contributions tofreedom), between 4 and 2.

There are data inversion approaches, exemplified by the the total delay. Assuming, for example, the inverse square law
for the depth decay of turbidity, we arrive at the requirementsingular value decomposition (SVD) technique, that permit

decoupling of the number of parameters and the number of that the layer thickness must increase with depth as the depth
squared. This approach will at the same time produce a set ofdegrees of freedom, at the price of using correlated parameters.

Thus by using SVD we might, to a large degree, get rid of the boundaries that are reasonable from the second point of view;

that is, meeting the requirement that more or less comparableproblem of the choice of parametrization of the model; instead,
however, we would add to the already complicated problem amounts of data be present in each layer (because of the

properties of real seismicity, data density quickly decays withunder study all the technical intricacies of SVD. In the present

novel attempt to invert ge structure we preferred to use the depth below h=80 km despite the special efforts described
above). These two general requirements could not, however,more transparent technique of common least squares (LS). The

actual LS procedure used includes iterative residual-dependent be met simultaneously for the uppermost part of the profile,

because of the lack of data for small depths, and, in the mostweighting (6) to make it robust.
Two different parametrizations, or generic model profiles, detailed inversion, the 0–10 km layer lacks data points.

Another way to choose layer boundaries is to use ourhave been used. The first is a piecewise-constant profile

(PCP), which consists of a number of constant-ge layers over previous experience. For the case of a single-layer over half-
space model, Gusev & Abubakirov (1996a) performed three-constant-ge half-space. This structure is chosen as simple and

easily invertable by linear least squares. When layer boundaries parameter inversion of Kamchatka data with a variable,

unknown, value of layer thickness, and found that the optimalare fixed, the number of parameters in this model is M+1,
where M is the number of layers. The weak point of this model single-layer depth is between 20 and 45 km. One more con-

sideration is to take into account the typical crustal depth inis the unrealistic constant-ge lowermost half-space. On the

basis of results of Rautian et al. (1981) and Gusev (1995) one Kamchatka, of 30–35 km, and to use the Moho depth as a
candidate boundary depth. Based on all this reasoning, wewould rather expect a fast decay of turbidity over the whole

depth range studied, with the possible exception of a surface chose 35 km as the value of the layer thickness for the single-

layer model. For the two-layer model, this single boundarylayer. In view of this expected behaviour, it was suitable to
incorporate the vertical decay of turbidity into the model. was split into two at 20 and 80 km. For the three-layer model,

we retained the 35 km boundary, and added 10 km and 100 kmThe important advantage of such a model is that it permits

consistent estimation of integral scattering loss over the boundaries. The particular positions of the 10, 20, 80 and
100 km boundaries have no geological meaning, and are chosenwhole crust and upper mantle, whereas any model with a

constant-ge lower half-space is completely inadequate for this based on our general approach. As for the TPLP model, the
layer thickness was either estimated from data, or, for less-purpose. The particular model used that incorporates the

expected vertical decay of turbidity is the TPLP one (7). This informative data sets, was fixed at 40 km for the reasons

explained below.particular kind of structure has recently been proposed by
Gusev (1995) based on the interpretation of coda-Q data, and One might expect to improve somewhat the reliability of

inversion if it were possible to colocate layer boundaries withone of the aims of the application of this model was merely

the determination of its parameters from a new kind of data. those known from other structural data, for example seismic
structure. In this connection, it should be noted that theWith TPLP, there are three unknowns, G, a and H, and the

problem is non-linear with respect to the two last variables. relationships between effective turbidity and other better-studied

structural properties of the Earth medium are essentiallyHence, to find a solution, we will apply a common grid search
over a and H, and combine it with least squares with respect unknown. In addition, the structure of a subduction zone, for

example Kamchatka, is complicated and its most prominentto G.
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element—the interplate interface—is not horizontal. For these (5) TPLP with constrained H=40 km; two unknowns:

a and G.reasons, with the exception of the Moho, we were not able
meaningfully to incorporate geological information into the (6) TPLP with constrained a=2.5; two unknowns: H and

G, and also one unknown (G) in the two noisiest data sets.choice of layer boundaries.

As was noted above, in both the PCP and TPLP cases,
In both Inversions 5 and 6, the aim is to obtain stabilized

there is one more unknown, namely the distance-independent,
estimates where those of Inversion 4 are doubtful.

constant pulse delay tm0 . With a very limited number of
When analysing the results of inversions one should keep in

degrees of freedom in the data, it would be very useful to get
mind the geophysical constraints on the unknowns: tm0 and

rid of this unknown, fixing its value in some reasonable way.
all gei must be positive, and solutions with non-monotonic

This will be done with the use of the a priori estimate
depth decay of ge are less probable (but not impossible). A

obtained above.
graphical illustration of the inversion procedure is given for

Finally, we list all the variants of inversion that will be
Inversion 4 in Fig. 7; generally, the plots for different inversions

presented. Consecutive numbers will be used systematically
differ only slightly.

to enumerate models, inversions and tables with their results.
We begin with the PCP model and successively analyse the

Inversions of individual data setscases of one, two and three layers. The single-layer case is

the test one: if a meaningful inversion for a data set cannot
be performed with only two unknowns, the data set is hardly Inversion 1 (Table 1)
usable at all. In this case only we analyse the following

The results of this and other inversions are given in tables of
possibilities: (1) not to apply the residual-dependent weighting;

similar structure. Table 1 contains: data volume N (similar for
and (2) not to constrain the value of tm0 . Next the two- and

all inversions), rms residual y of y
j
in per cent, average weight

three-layer cases are analysed, and for each data set we note
wav , two estimates of effective turbidity: ge1 ( layer) and ge2at what number of unknowns the instability of inversion arises.
(half-space), and estimated tm0 . The value of wav may be viewed

The inversions, then, are as follows.
as the proportion of data not rejected, because the residual-
dependent weighting function (6) changes from values of about(1) PCP model with a layer (35 km crust) over a half-space

(mantle). unity to values of about zero rather abruptly. Because of the
very large range of ge values, we prefer to describe the accuracy(2) PCP with two layers and a half-space; boundaries set at

20 and 80 km. through relative errors, rather than through absolute ones.

Thus, all estimated parameters are accompanied by formal(3) PCP with three layers and a half-space; boundaries set
at 10, 35 and 100 km. relative errors, expressed as coefficients of variation (defined

as usual as standard deviation/estimate). We cite them forThe four-parameter Inversion 3 is on the brink of instability

even for the best data sets. Next, we pass to the TPLP model general orientation; as one can see from simulated examples
in Paper I, they should not be given a large amount of creditand perform inversion with three, two or even one (G)

unknown: as they may significantly underestimate real inaccuracies. In

tables 2–6 we also give estimated values of effective optical(4) TPLP with three unknowns: H, a and G. This inversion
is relatively stable for the best data sets only. thickness L e of the profile; all these estimates will be discussed

Figure 7. Illustrations for inversion 4, for stations SPN and PET, for P and S waves. # and × signs denote data points ‘accepted’ (i.e. with

weight above 0.3) or ‘rejected’ (weights below 0.3). Columns 1 and 3: residuals of y versus hypocentral distance; the graph of the actual weighting

function is plotted along the vertical axis on the left. Columns 2 and 4 tm versus hypocentral distance. + denotes a theoretical tm value. The

reference line shows a quadratic trend characteristic for constant-ge medium.
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Table 1. Inversion 1: PCP model, one layer (0–35 km) over half-space*.

Data set N 100y wav ge1 & CV ge2 & CV tm0(s) & CV

P-SPN 478 18.73 1 45.7 0.12 0.91 0.87 −0.03 7.43

2.67 0.64 10.7 0.09 0.23 0.50 0.05 0.78

S-SPN 630 5.70 1 18.4 0.08 0.01 15.2 −0.04 2.43

2.16 0.80 4.14 0.17 0.59 0.13 0.37 0.12

P-PET 207 13.91 1 37.1 0.12 −2.68 0.34 0.31 0.60

2.70 0.79 7.90 0.14 0.45 0.40 0.27 0.13

S-PET 262 4.71 1 5.64 0.27 0.56 0.56 0.73 0.13

2.00 0.84 5.75 0.12 0.46 0.28 0.44 0.10

P-TOP 316 12.29 1 −12.51 0.80 1.74 0.38 3.06 0.14

9.48 0.89 −17.83 0.43 1.57 0.32 2.92 0.11

S-TOP 375 8.97 1 10.87 0.60 0.69 0.71 1.39 0.36

3.23 0.81 10.43 0.22 0.95 0.18 0.24 0.76

P-BER 198 13.42 1 20.18 0.39 −2.53 0.48 0.94 0.50

3.63 0.79 2.36 1.00 −0.22 1.57 0.70 0.21

S-BER 362 3.50 1 10.29 0.20 1.74 0.15 −0.22 1.01

1.95 0.85 6.33 0.19 1.04 0.14 0.03 4.11

P-KRI 164 18.42 1 4.58 0.22 −4.53 0.53 −0.38 1.55

4.66 0.72 8.32 0.43 0.13 4.13 0.21 0.91

S-KRI 229 10.70 1 14.11 0.46 −0.31 3.04 0.22 2.84

1.75 0.76 3.63 0.30 0.90 0.17 0.17 0.60

*For each data set, two inversions are presented as two lines. Upper line: no weighting is applied; lower line: standard weighting. gei values in

10−3 km−1 units.

Table 2. Inversion 2: PCP model, two layers (0–20 and 20–80 km) over half-space.

Data set 100y wav ge1 , 10−3 km−1 ge2 , 10−3 km−1 ge3 , 10−3 km−1 CV(ge1–3) L 200 & CV(L 200)

P-SPN 2.61 0.63 9.76 1.41 0.162 0.084 0.146 1.21 0.37 0.084

S-SPN 2.29 0.81 9.53 1.86 0.042 0.073 0.084 3.33 0.38 0.061

P-PET 2.86 0.80 (22.89) (1.12) 0.277 0.101 0.378 1.03 (0.68) 0.072

S-PET 2.06 0.84 9.70 2.26 0.086 0.111 0.103 2.54 0.43 0.085

S-TOP 3.38 0.81 10.71 2.68 0.905 0.165 0.102 0.28 0.62 0.077

S-BER$ 1.92 0.85 (5.07) (2.20) (−0.70) 0.154 0.101 0.80 (0.18) 0.477

P-KRI$ 4.65 0.72 (11.02) (1.85) (−0.90) 0.119 0.374 2.42 (0.26) 1.321

S-KRI 1.71 0.76 4.13 1.53 0.042 0.113 0.128 14.2 (0.23) 0.412

P-ave. 9.7 1.4 0.21 0.37

S-ave. 8.5 2.1 0.27 0.47

$Considerable negative ge3 , unreliable result.

Table 3. Inversion 3: PCP model, three layers (0–10, 10–35 and 35–100 km) over half-space.

Data set 100y wav ge1 , 10−3 km−1 ge2 , 10−3 km−1 ge3 , 10−3 km−1 ge4 , 10−3 km−1 CV(ge1–4) L 200 & CV(L 200 )

P-SPN$ 2.60 0.63 9.6 6.04 0.66 0.13 0.51 0.21 0.37 1.82 0.37 0.12

S-SPN$ 2.25 0.81 10.2 5.31 1.22 (−0.14) 0.33 0.16 0.14 1.22 0.37 0.08

P-PET$ 2.67 0.80 10.1 6.97 1.59 (−0.17) 0.51 0.24 0.29 1.97 0.45 0.13

S-PET$ 2.02 0.84 5.0 8.53 0.84 (0.17) 0.70 0.13 0.34 1.60 0.41 0.10

S-TOP# 3.14 0.81 (−3.6) (17.2) (−0.2) (1.25) 1.29 0.11 2.13 0.23 (0.64) 0.07

S-BER# 1.93 0.85 (−7.1) (8.4) 90.480 (1.30) 0.60 0.15 0.59 1.02 (0.39) 0.44

P-KRI# 4.70 0.73 10.9 8.20 (0.54) (−2.61) 0.64 0.34 1.79 2.15 (0.05) 13.5

S-KRI# 1.71 0.76 6.7 2.08 (1.46) (−2.62) 0.32 0.42 0.17 0.58 (−0.11) 2.2

P-ave. 10.2 7.0 1.1 — 0.41

S-ave. 7.3 5.4 1.0 — 0.39

$ ge4 error above 100 per cent, ge4 considered unreliable, other gei considered acceptable.

#Large errors, negative gei estimates, inversion unreliable.
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Table 4. Inversion 4: TPLP model, search over both H and a separately. Some Tables contain averages over results of the
parameters. stations studied. As some individual station estimates are

unreliable these averages are calculated over acceptable estimates
Data set 100y wav a H G & CV L 200 L 1000 only (the unacceptable values are those in parentheses).

km 10−3 km−1
Inversion 1 was applied to all 10 data sets, both for cases of

residual-dependent weighting skipped and applied. Let usP-SPN 2.52 0.63 4 40 4.43 0.048 0.30 0.30
discuss its results. The values of rms residual y change radicallyS-SPN 2.21 0.81 2 30 5.07 0.033 0.35 0.38
when weighting is applied, and its critical role is evident. MostP-PET 2.60 0.78 3 70 3.00 0.062 0.37 0.38

S-PET 1.98 0.84 4 40 7.25 0.040 0.40 0.40 contaminated are the P-wave data, as manifested (as compared
S-TOP# 3.28 0.81 1.5 20 9.61 0.042 0.58 0.67 to S) both in larger y for the ‘no weighting’ case and in a
S-BER# 1.89 0.84 5 50 3.27 0.043 0.26 0.26 smaller average weight for the ‘weighting’ case. In the case of
P-KRI# 2.88 0.62 5 90 2.19 0.103 0.33 0.33 the P-SPN data set, more than one-third of the initial data is
S-KRI# 1.71 0.76 1 20 3.41 0.057 0.49 0.45

rejected, whereas typical figures are 15–25 per cent. A special
aver. 3.3 45 case is the P-TOP data set, where weighting is evidently

incapable of supressing large errors.P-ave. 3.5 55 0.32 0.34
Looking at ge estimates, one notes that they decrease severalS-ave. 3 35 0.37 0.39

times when weighting is applied. Some estimated ge values are
#Among these four data sets, there is close positive correlation between negative even with weighting applied, indicating data sets of
H and a indicating unstable inversion; only SPN and PET results doubtful value. We qualified as such and thus rejected the
included in the average. P-TOP data set with very high y, negative ge1 and very high

tm0 , and the P-BER set with high y, negative ge2 and high tm0 .
However, we later analyse the P-BER data set for the sake of

comparison, with severe constraints applied. The data sets forTable 5. Inversion 5: TPLP model, H=40 km constrained; search
BER, TOP and KRI are, generally, less informative, and thisover a parameter.
will be seen in further inversions as well.

As becomes evident from a comparison of ‘no weighting’Data set 100y wav a G & CV L 200 L 1000
10−3 km−1 and ‘weighting’ cases, the parameter estimates depend mostly

on the choice of a particular set of weights. The error related
P-SPN 2.52 0.63 4 4.42 0.048 0.30 0.30 to a poor choice of weights is of a specific kind and has no
S-SPN 2.53 0.80 4 4.72 0.034 0.32 0.32 manifestation in the formal error bounds of LS. Because of
P-PET 2.61 0.79 2 4.84 0.062 0.40 0.42

this limited value of formal errors, we made no effort to
S-PET 1.96 0.84 5 5.91 0.040 0.37 0.37

calculate formal error ranges for non-linear searches. To judgeS-TOP 3.35 0.81 3 6.20 0.043 0.47 0.48
the real accuracy of our estimates comparisons should be madeS-BER 1.88 0.84 4 4.46 0.043 0.28 0.28
among the results of various inversions, and of various stationsP-KRI 3.30 0.64 (0.5)# 2.64 0.108 0.49 1.08

and wave types.S-KRI 1.75 0.76 2.5 3.00 0.058 0.23 0.23

Now consider the tm0 estimates. It can be seen that they are
P-ave. 3 4.6 0.35 0.36

rather scattered: some of them are evidently too small, whileS-ave. 3.3 4.8 0.33 0.34
others are larger than a significant part of the observed data

(so that if one would use them for correction and subtract them#Very doubtful a estimate.

from data, one would obtain negative, physically meaningless

corrected tm values). A similar scatter was found in various

other trial inversions. Note also that the averaging of values
Table 6. Inversion 6: TPLP model, a=2.5 constrained; search over of tm0 estimates for the ‘weighted’ inversion over all reasonable
H parameter.

P-wave data sets (with P-TOP and P-BER excluded) gives the

value of 0.22 s, a value that is close to our a priori estimate of
Data set 100y wav H G & CV L 200 L 1000 0.18 s. We may assume that, although the estimation of tm0 is10−3 km−1

a reasonable idea and even produces, on average over all data

sets, a quite realistic figure, the scatter of individual estimatesP-SPN 2.53 0.63 30 5.27 0.048 0.32 0.33

S-SPN 2.21 0.80 30 5.68 0.033 0.35 0.36 is too large to permit the use of tm0 as a free parameter; that
P-PET 2.60 0.79 50 2.80 0.063 0.40 0.44 is to estimate it in each inversion, for each data set. In other
S-PET 2.00 0.84 40 4.59 0.041 0.38 0.39 words, we consider the scatter of tm0 estimates among data
S-TOP 3.30 0.81 30 8.54 0.042 0.52 0.54 sets as essentially random, representing inversion inaccuracy.
P-BER$ 3.82 0.79 [40] 4.76 0.080 0.40 0.41

This point of view is supported by the noticeable negative
S-BER 1.90 0.85 40 3.50 0.043 0.29 0.30

correlation between tm0 and ge1 estimates which is quiteP-KRI 3.18 0.63 (90)# 2.27 0.108 0.40 0.45
understandable if caused by random error (because these twoP-KRI$ 3.89 0.67 [40] 4.37 0.105 0.36 0.37
least-squares estimates are negatively correlated), but has noS-KRI 1.74 0.76 30 3.76 0.057 0.23 0.24

evident reason if considered as meaningful. Hence, we decided
P-ave. 2.77 0.68 56 0.37 0.41

to constrain the tm0 value in all further inversions and toS-ave. 2.23 0.81 34 0.35 0.36
set it to the a priori estimated value of 0.18 s. The results of

the constrained-tm variant of Inversion 1 do not show any$Both H and a constrained.

#Very doubtful H estimate. interesting points and thus are not given.
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between H estimates from P and S inversions for PET and,
Inversion 2 (Table 2)

similarly, between a values for SPN, is about twofold. At any
rate, a is bracketed between 2 and 4, and H is between 30 andOne can see that the results for S-BER, S-KRI and specifically

P-KRI are less accurate (formal errors are above 40 per cent); 70 km. The average H and a values are listed in Table 4. The

estimates of G from Inversion 4 correspond to different layernote that for S-BER and P-KRI, ge3 estimates are negative.
Among five better results, one can see that ge1 , for h=0–20 km, thicknesses and should not be compared.
is fairly stable among stations and wave types, with a large

outlier value for P-PET only. As for ge2 , for h=20–80 km, the
Inversion 5 (Table 5)

results show a somewhat larger scatter, and the value for
P-PET is the smallest, and of low accuracy. We consider the In an attempt to obtain more stable estimates for four less

informative data sets, in Inversions 5 and 6 we fixed either Hresults for P-PET doubtful in this case. There is a possibility
that the choice of layer boundaries is specifically unfavourable or a. In Inversion 5, the value of H=40 km is constrained. It

is chosen to be near to the average H estimate found infor this particular station: in the next inversion with another

set of boundaries, the results are quite regular. As for ge3 for Inversion 4 (a comparable figure is also obtained in Inversion 6
with a fixed value of a, as will be seen soon). Estimates of athe lower half-space, its estimates have a scatter of one order

of magnitude, and have large and comparable absolute errors for TOP, BER and KRI, with the exception of P-KRI, all

agree with the previous analysis made for SPN and PET based(the scatter of relative errors given in the Table is caused by
the scatter of the estimates themselves; this is the rare case on results of Inversion 4, and give an average a of about 3. Of

all the TPLP inversions, only here, at constant H, do wewhere absolute errors would be preferable). Thus, only an

order-of-magnitude estimate for ge3 can be deduced. obtain G estimates that are comparable among stations.

Inversion 3 (Table 3) Inversion 6 (Table 6)

Here the value a=2.5 is fixed based on the results of GusevThe general result of Inversion 2 is, as expected, fast ge
decay with depth. To see this decay more clearly, we tried (1995); it is not far from the estimate of a#3 from Inversions

4 and 5. The main results here are the H and L e estimates,to resolve a three-layer structure. However, we managed to
obtain a marginally meaningful result only for stations SPN which are mostly stable and meaningful, with some doubts as

regards the P-KRI data set. We also tried to obtain an estimateand PET, and, even for them, only for the three upper layers.
For KRI, only ge1 and ge2 have any meaning; both ge3 and for the P-BER data set (rejected in most inversions), fixing

both H=40 km and a=2.5. The result seems reasonable, andge4 are considered unreliable. The averages over stations for

Inversion 3 show in most detail the vertical ge structure within it is added to Table 6. In the same manner, the second estimate
for P-KRI was obtained as well.the 0–100 km depth layer. An approach with PCP is, however,

incapable of obtaining meaningful estimates for larger depths,

and to obtain information on larger depths we made TPLP
Optical thickness estimates

inversions.
In addition to ge estimates for various depths, we consider it

useful to represent the integral loss properties of the entire
Inversion 4 (Table 4 and Fig. 7)

profile by a single figure. A measure of such a kind is the
effective optical thickness L e (eq. 13 of Paper I—may also beThree TPLP inversions were performed, with a grid search

over a, H or both. The grid over H had a constant step of written as 2p f t*). Logically simplest is the vertical optical
thickness calculated for a vertical ray. However, for any10 km, and that over a consisted of the following set of values:

{0.5, 1, 1.5, 2, 3, 4, 5}. In each least-squares solution, the single seismological application we are most interested in the effect

on a real inclined ray. Therefore we calculated the ‘nearlyparameter G was sought for (thus its formal error is inevitably
too optimistic). vertical effective optical thickness’ L

h
of the upper layers of

the Earth, calculated along a ray that starts at a depth h at anThe first important general property of TPLP inversions is

their markedly and systematically decreased residual error y angle of incidence of 45°. The relative errors of L
h
are calculated

from errors of G or gei on the basis of the usual error transferas compared to the PCP case, giving this model a considerable
advantage in general. In Inversion 4, we set both parameters formula that accurately accounts for errors in G or gei and for

correlations between estimates of gei . However, errors ofa and H free. From Table 4 one can see that, for the relatively
more informative data sets of SPN and PET, estimates of a estimation of H and a are not accounted for; hence, for the

TPLP case, most interesting here, errors of L
h

are under-and H are limited to the ranges of 2–4 and 30–70, respectively.
For the other four data sets, ranges are wider (1.5–5 and estimated. As was explained above, formal error estimates may

be too low in general because of a certain arbitrariness of20–90 km), but this hardly reflects the real scatter. This view-

point is supported by the fact of clear probably artificial weighting. We believe that the scatter between stations bears
more reliable information on the real range of errors; this ispositive correlation between a and H estimates. For this reason,

we consider meaningful only inversions for SPN and PET. true both in general and specifically for L
h
. This idea is

supported by the analysis of the simulated inversion examplesThe estimates of H and a are, or course, rather rough. Their
real accuracy can be seen from the fact that both these of Paper I. The particular h value chosen for illustration for

the PCP cases is 200 km, so we cite the estimates of L 200 inparameters, ideally, must be near to one another for P-wave

and S-wave data inversions of the same station, because they that group. In the TPLP cases we calculated two L e estimates,
L 200 and L 1000 , which are both meaningful. Both L e estimatesboth reflect highly correlated scatterer structures produced by

the same inhomogeneity. In the actual inversion, the difference have in this case the same formal relative error as G.
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(marked by C). The values of the mean free path, le=1/ge , are
Analysis of results

also given. The relative (rms) error column is based both on
Now we discuss the results of the inversions as a whole. The the interstation scatter and on individual station accuracy; it
first important point is that the gei results of Tables 1–6 show contains our rough but realistic estimates of relative accuracy
no clear indications of significant differences between stations. of the final average effective turbidity and mean free path values.
Be such differences real or not, our estimates are of too low One can note a general consistency of estimates from
an accuracy to resolve them. Thus we will confine our analysis different inversions. The initial idea of monotonic turbidity
to the joint estimates (Table 7 and Fig. 8), averaged over all decay with depth is essentially confirmed. The only exclusions
stations (three or four for P waves and five for S waves). Two are the estimates for the 0–20 km and 0–10 km layers for
versions of each gei value are listed, for the following reason. S waves: here the 0–10 km layer estimate is insignificantly
As explained in Paper I, the inversion procedure is constructed smaller. In general, the vertical effective turbidity profile cannot
on the basis of the oversimplified Gaussian-ACF heterogeneity be compactly described either as a layer over a negligibly
model; hence, modification is needed in order to arrive at scattering half-space, or as a thin layer over a half-space with
geophysically meaningful estimates that take into account a a power-law decay. Some structure is seen in the upper layers,
more realistic, self-affine, heterogeneity spectrum. In Paper I, with relatively slow general decay within the upper 40 km; the
after some discussion, the constant correction coefficient, equal

decay becomes fairly steep at larger depths, in general agree-
to 2.0 for ge , was proposed for this purpose. Hence, we cite

ment with the power-law model. All attempts to introduce
the ge values twice: as calculated, and also multiplied by 2.0

single upper layer within the PCP model resulted in a definitely

worse fit than for the two- or three-layer models. However in

terms of quality of fit, TPLP models are even better and the

inverse power-law-like depth decay of effective turbidity below

40–60 km may be considered as well-founded. However, the

numerical values of G obtained in TPLP Inversion 5 are

somewhat lower than the expected value for the same 40 km

layer that may be deduced from the layer estimates of

Inversions 2 and 3. In our view, this slight systematic difference

(note that it is larger for P waves where the accuracy for the

20–80 km layer is poor) may reflect a specific property of ge
estimates discussed in some detail in Part I. Namely, such

estimates are not simply additive, so that the direct estimate for

a thick layer need not coincide with the average over sublayers.

In such a situation, we do not attach much importance to G

estimates from Inversion 5.

Our data do not permit us to determine accurately the

actual mode of depth decay, for the probable reason that our

data sets have too small a proportion of (rare) events at depths

greater than 160 km. The inverse power-law trend of Gusev

(1995) had a=2–3. When this estimate is used as an a prioriFigure 8. Estimated vertical profiles of average effective turbidity for

P and S waves under Kamchatka, in common and log–log scales, constraint by fixing a=2.5 in Inversion 6, the result did not
based on summary values of Table 7. Boxes depict estimates from show any features of a bad fit. However, attempts to estimate
PCP inversions; their vertical size is ±1s, and their horizontal size this exponent independently gave, in the unconstrained
reflects the layer thickness assumed in a PCP inversion. The grey band

Inversion 4 for SPN and PET, and in the depth-constrained
shows the results of the TPLP inversion. For the horizonal (upper)

Inversion 5 for other stations, a rather wide range of a=2–4.
part, the width of the band is based on ±1s for G; for the deeper

Therefore, one can infer that the present tm data set canpart, the width reflects ±1s for G and the interval estimate for
constrain only weakly the depth decay of ge and it can bea (a=2–4) combined. The smooth line is the preliminary estimate of

the profile function. parametrized as a=2–4. In addition to the regular ge estimates

Table 7. Average effective turbidity estimates (10−3 km−1 units) for layers*.

depth model P waves S waves geP/geS
range type

ge geC leC , km RE% ge geC leC , km RE%

0-10 PCP 10 20 50 15 7 14 70 20 1.4

0-20 PCP 10 20 50 50 8 16 62 25 1.2

10-35 PCP 7 14 70 15 5.5 11 90 20 1.25

20-80 PCP 1.4 2.8 350 50 2.1 4.2 240 20 0.7

35-100 PCP 1.1 2.2 450 25 1.0 2.0 500 20 1.1

80-200 PCP 0.2 0.4 2500 50 0.27 0.5 2000 50+ 0.85

0-40 TPLP 4.6 9 110 20 4.8 9.5 105 20 0.95

* RE is the relative error.
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discussed above, we have drawn continuous ge (h) profiles in in mind that horizontal variations of crustal thickness are

prominent in the Kamchatka region, and also that the MohoFig. 7. They represent our general understanding of the
smoothed effective turbidity structure only and should not be boundary as such is often not unequivocally identified. At any

rate, the high-turbidity layer cannot be directly identified withtreated as formal estimates.

For most inversions we calculated the values of L 200 , and, the crust. It matches much better the depth interval containing
most seismicity: shallow events in the Kurile-Kamchatka islandfor TPLP inversions, those of L 1000 . Better estimates, from

Inversions 3, 4 and 6, are compiled in Table 8. One can see arc occupy the same depth interval, and the fast decay in the

depth distribution of hypocentres begins at 45–50 km, compar-that the estimates agree well among modes of inversion. The
interstation scatter is 40 per cent. We cannot decide at present able to the above-mentioned estimate of 40–45 km for the

lower boundary of the high-turbidity layer.whether this represents a real phenomenon, or is related to

random errors. All figures are given for oblique rays; for strictly Abubakirov & Gusev (1990) estimated the mean free path
around stations SPN and PET from the direct-wave-to-codavertical rays they must be multiplied by about 0.75.

Estimates of ge for P waves are comparable to those for amplitude ratios, and obtained, for the 1.5, 3 and 6 Hz fre-

quency bands, S-wave l estimates in the range 100–150 km forS waves. The layer ratios of P- to S-wave turbidities are
cited in Table 7; they show considerable scatter, doubtfully of a coda lapse time of 20 s. These estimates can be regarded as

indicating the average le value over the surface of the half-geophysical meaning. A gross estimate for the whole profile

probably makes more sense. We calculated it from the values sphere of about 35 km radius around the station. These values
agree fairly reasonably with our estimates of leC=62 km andof L

h
in Table 8; the average ratio is L

hP
/L
hS
=geS/geP=1.1

(or Q
S
/Q

P
=1.90). Most estimates of L

h
have a formal accuracy 240 km above and below the 20 km assumed boundary.

Abubakirov & Gusev (1990) also give estimates of coda Q,of about 15–20 per cent, and for their average the figure is
even better (±10 per cent); the estimate of their ratio L

P
/L
S

or Qc , as Qc (3 Hz)=540 for coda lapse times of 50 s; this
value should be ascribed to the surface of a half-sphere ofhas comparable accuracy because L

P
and L

S
are positively

correlated. Based on interstation scatter, one can obtain more 90 km radius. It agrees with scattering Q values of 310–1100
(around 3 Hz) that follow from our ge estimates for the samereliable and more conservative estimates of accuracy, of about

25 per cent, both for average L
h
and their ratio. 0–20 km and 20–80 km layers.

On the basis of the determined ge values we can make
indirect estimates of some other parameters of interest. First,

DISCUSSION
we can extrapolate our results, valid for the neighbourhood
of 3 Hz, to a frequency of 1 Hz. There is a relatively well-For tens of years, the technicians of the data processing group

of Kamchatkan seismological service have discriminated by established frequency dependence of S-wave scattering Q; it

usually behaves like f b [or g( f )3 f 1−b], with b=0.7–0.9 foreye earthquake populations with depths above and below the
30–50 km boundary (‘crustal’ and ‘mantle’ events), judging by tectonic regions, and one can assume a similar trend for P

waves. For Kamchatka around Shipunski station, the ge( f )the degree of visual ‘clarity’ of body-wave groups as seen on

the photo-record (at the same hypocentral distance, ‘mantle’ trend between 1.5 and 6 Hz was estimated by Abubakirov &
Gusev (1990) as weakly expressed. Hence we set b=0.9 forevents make much clearer onsets and shorter pulses). When

the calculated hypocentre depth is doubtful, a technician the rough numerical estimates below. In particular, one can

extrapolate the estimated L 1000 or ge values to 1 Hz. In termsregularly uses this fact to deduce the correct interval for depth
(Gusev 1979). Thus the position of the boundary of the of the standard teleseismic loss parameter t*¬L /2p f , this

gives us the contributions of scattering to P-wave t* on theupper layer, located by TPLP inversions approximately at

h=40–45 km, is not at all unexpected. It is somewhat larger receiver side of a teleseismic ray as dt*receiver#0.12 at 1 Hz. For
the focal side of a teleseismic ray, the similar dt*focal parameterthan the formal Moho depth of 30–35 km. One should keep
may vary from a value of about zero for a deep event, to a

value equal to dt*receiver for event at 1–2 km depth. Thus,Table 8. The values of effective optical thickness L e . neglecting the scattering contribution to t* below 1000 km
depth, one can give the range for the total scattering con-Data set L 200 L 1000 tribution to t*, or dt*, as dt*(1 Hz)=0.12–0.24. For the

I3 I4/I6 AV AVC I6 I6C assumed reference earthquake depth of 20 km, one can assume
dt*#0.20. For S waves, estimates are similar.

P-SPN 0.37 0.30 0.33 0.66 0.33 0.66 In the same manner we can estimate S-wave scattering losses
S-SPN 0.37 0.35 0.36 0.72 0.36 0.72 for local to regional distances. Based on Table 7, we set S-wave
P-PET 0.45 0.37 0.40 0.80 0.44 0.88 effective turbidity values for the 0–20 and 20–40 km layers as
S-PET 0.41 0.40 0.40 0.80 0.39 0.78

ge020=0.016 km−1 and ge2040=0.007 km−1 ; we also fix the
S-TOP (0.64) 0.52 0.50 1.00 0.54 1.08

characteristic depth of a shallow Kamchatka event as 35 km.
P-BER — 0.40 0.40 0.80 0.41 0.82

For a given hypocentral/ray distance, let us estimate the ray-S-BER (0.39) 0.29 0.28 0.56 0.30 0.60
average effective turbidity value as the weighted sum of theP-KRI (0.05) 0.40 0.40 0.80 0.45 0.90
two listed figures, with the weights proportional to the relativeS-KRI (−0.09) 0.23 0.23 0.46 0.24 0.48

ray lengths within each layer. For ray distances of 30, 100 and
P-ave. 0.41 0.37 0.38 0.76 0.41 0.82

300 km, the weights are, approximately, {1, 0}, {0.3, 0.7} and
S-ave. 0.39 0.36 0.35 0.70 0.37 0.74

{0.1, 0.9}, giving the ray-average effective turbidity values ofP/S ratio 1.05 1.03 1.08 1.08 1.10 1.10
0.0160, 0.0097 and 0.0079 km−1, respectively. At c

S
=3.5 km s−1

this gives ray-average scattering Q
S
, or Qsc,S (3 Hz), of 335,I3, I4 and I6: results of inversions nos 3, 4, and 6; AV: average over

inversions; AVC: same, corrected. 555 and 680, or, for 1 Hz, assuming again b=0.9, we obtain
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Qsc,S (1 Hz)=125, 205 and 255, respectively. These values are geneity field with a von Karman autocorrelation function. For

high frequencies (essentially, the self-affine case) he estimatedwhat we expect on the basis of our tm analysis for the scattering
contribution to Q for local/regional events. f#1.64+1.5k, where k is the parameter of the von Karman

function; this gives k#0.17, and the corresponding value ofFedotov (1972) constructed the amplitude decay curve

for S-wave magnitude determination for the same types of the exponent in the power-law inhomogeneity spectrum is
equal to c=3+2k#3.35. This value can be compared toinstruments and data as used here. Based on the estimated

distance-dependent ge values, one can find the power n in the preferred estimates of c after Sato (1990) and Gusev &

Abubakirov (1996b), both equivalent to c=3.7. These estimatesthe usual A3r−n relationship that describes the amplitude
curve. To do this, we assume: (1) geometrical spreading is 1/r; are comparable; some difference may be expected because the

analysis here is for an acoustic approximation and for effective(2) the observed amplitude behaves as (spectral energy/pulse

duration)0.5 ; and (3) pulse duration is proportional to distance. turbidity, whereas Sato’s estimates are for elastic waves and
for ‘true’ turbidity.We also assume that the contribution of intrinsic loss to

the total loss is small. A simple calculation gives n#1.8 for

r=50–150 km, and n#2.1 for r=100–300 km. The actual CONCLUSIONS
shape of the amplitude curve, after its argument conversion

We have performed a practical reconstruction of the verticalfrom ‘S–P’ to the distance r scale, follows n#2.0 in the distance
distribution of scattering properties of the Earth medium onrange r#40–300 km. This compares reasonably with our
the basis of the observed body-wave pulse broadening causedestimate, giving a certain credibility to our assumptions, and
by forward scattering. In terms of effective turbidity, for thesuggesting that the contribution of intrinsic loss to total
2–5 Hz frequency range, the structure under Kamchatka canattenuation at regional distances is secondary, in agreement
be described as a 40–50 km thick layer of gradually decreasingwith the earlier estimates of Q

i
=1000–2000 of Dainty (1981)

effective turbidity, underlain by a half-space with a fast decayand Gusev (1995). Summing up the comparison to regional
of effective turbidity with depth; this decay approximatelydata, we note that the known properties of direct S waves and
follows the inverse power law with an exponent of about three.coda in Kamchatka are in reasonable agreement with our
This result is novel both methodically and in terms of aeffective turbidity estimates.
particular structure. An important point is that the upper layerWe have no available data for P waves to compare. However,
does not coincide with the crust (30–35 km thick here); rather,there is a piece of teleseismic evidence that can be used as an
the vertical effective turbidity profile resembles the verticaladditional check on our approach. McLaughlin & Anderson
distribution of seismicity. The numerical values of effective(1987) studied the differential delay of teleseismic P-wave
turbidity estimates agree well with earlier turbidity estimatesenergy from explosions, on many station and arrays. They
from coda waves, and the expected scattering loss grossly explainscalculated the differences dT =T (5 Hz)�−T (1 Hz)� and
the shape of the standard Kamchatka amplitude attenuationfound them to be about +0.5 s, with large scatter. We will
(magnitude-calibration) curve. This suggests that the intrinsicshow that this observation agrees with our approach, with an
loss is of secondary importance at relevant distances (50–300 km)additional assumption of slow ge increase with frequency. For
and frequencies (2–4 Hz). Therefore, an important possibilitythe numerical calculation, we again set ge3 f 1−b with b=0.9.
occurs to deduce minimum attenuation estimates from pulseTo estimate T ( f )� one can use Bocharov’s formula for the
broadening data (or even, after proper calibration, to estimatecase where the observer and the source are each located on
intrinsic losses proper by subtracting scattering loss from totalthe surfaces of two Gaussian-ACF thin scattering layers of
loss). An illustration developed here is the estimate of theturbidities ge1 and ge2 and thicknesses h1 and h2 , and the layers
lithospheric scattering contribution to the total teleseismic loss,are separated by a thick non-scattering layer of thickness
of about Dt*

P
=0.20 s at 1 Hz.r−h1−h2 (h1%r, h2%r). Then eq. (12) of Paper I gives

The technique developed here can be applied for the
T�=(1/2c)(ge1h21+ge2h22 ) . (9) reconstruction of vertical effective turbidity profiles anywhere

if observations can cover a considerably wide relative verticalTentatively applying our ge estimates, valid for 3 Hz, to both
range of hypocentral depths.source and receiver structures, and fixing ge1h1=ge2h2=

L 200=0.8, h1=h2=40 km, and c=8 km s−1, we obtain
T (3 Hz)�=4 s. When ge3 f 0.1, this gives T (5 Hz)�=4.2 s, ACKNOWLEDGMENTS
T (1 Hz)�=3.6 s, and dT =0.6 s. Therefore, the observed dT
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APPENDIX A: FORMULAE FOR THE
COEFFICIENT a

i j
IN ( 8 ) FOR A LAYER-

OVER-HALF-SPACE VELOCITY PROFILE

We give an expression for the a
1j

coefficient for the simple

TPLP case, when both velocity and turbidity structures are
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