ИСПОЛЬЗОВАНИЕ ГЕОИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ДЛЯ ОБЕСПЕЧЕНИЯ КОМПЛЕКСНЫХ ГЕОФИЗИЧЕСКИХ НАБЛЮДЕНИЙ НА ТЕРРИТОРИИ КАМЧАТКИ

Иванов В.Ю., Касимова В.А.

Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский, pochta_88@bk.ru, vika@emsd.ru

Введение

Камчатский филиал ГС РАН (КФ ГС РАН) проводит организационные и научнометодические работы по созданию системы комплексных геофизических наблюдений на территории Камчатского края с целью мониторинга геологической среды и обеспечения прогноза сильных землетрясений и извержений вулканов. В настоящее время здесь функционируют сети радиотелеметрических сейсмических станций и станций сильных движений, сеть GPS-наблюдений KAMNET, пункты наблюдений за высокочастотными сейсмическими шумами и параметрами естественного электромагнитного поля; сеть скважин, на которых проводятся наблюдения за гидродинамическими и гидрогеохимическими параметрами режима подземных вод и др. Основными элементами информационной системы комплексных геофизических наблюдений являются сети станций по различным видам наблюдений, телеметрические или иные средства передачи данных; система сбора, обработки, анализа геофизической информации и оповещения исполнительных органов власти о текущей сейсмической и вулканической опасности и прогнозах сильных землетрясении и извержений вулканов [8-10]. Кроме этого, в КФ ГС РАН создана корпоративная вычислительная сеть, обеспечивающая непрерывную передачу сейсмических сигналов с удаленных цифровых и радиотелеметрических станций и станций GPS-наблюдений, доступ к архивному серверу и к серверам баз данных.

Большинство наблюдательных пунктов находится на территории Петропавловского геодинамического полигона, включающего гг. Петропавловск-Камчатский и Елизово, в которых проживает большая часть населения Камчатки. По долгосрочному сейсмическому прогнозу в этом районе в ближайшие годы ожидается сильнейшее землетрясение с М>7.75 [7], которое может сопровождаться катастрофическими последствиями для инфраструктуры и населения Камчатки.

Цель данной работы заключается в создании ГИС-проекта с использованием технологий ArcGIS9.0 для информационного обеспечения системы геофизического мониторинга и прогноза сильных землетрясений и извержений вулканов на территории Камчатки. В ходе предварительной работы осуществлялись сбор, организация и визуализация данных о расположении наблюдательных пунктов, их характеристиках, геолого-тектонических и сейсмических условиях; выполнялась привязка топографической, геологической, тектонической, гидрогеологической и других карт к единой системе координат; проводилась реализация быстрого доступа к информации о пунктах и объектах [1]. Созданный макет ГИС-проекта предназначен для систематизации и графического отображения информации о таких объектах, как наблюдательные пункты, скважины, населенные пункты, вулканы, реки, землетрясения (рис. 1). ГИС-проект может эффективно использоваться для оценки состояния наблюдательной сети при проведении комплексного геофизического мониторинга на территории Камчатки.

Методика работы

Важными элементами информационной системы комплексных геофизических наблюдений являются программные средства, обеспечивающие сбор и оперативный анализ данных геофизических наблюдений и возможность получения картографических материалов и других данных о состоянии наблюдательной сети. Решение первой задачи обеспечивается средствами информационной системы «POLYGON», которая используется для оперативного сбора и обработки геофизических, гидрогеологических и других данных в форме временных рядов, а также для пополнения базы данных на центральном сервере КФ ГС РАН. [4, 5].

Создание ГИС-проекта на базе ArcGIS решает задачу предоставления данных о конфигурации наблюдательной сети, характеристиках отдельных станций, геологических, тектонических и сейсмических условиях. В настоящее время ГИС-проект включает набор тем, в т. ч. топографическую основу, гидрографию, данные о расположении пунктов по различным видам наблюдений,

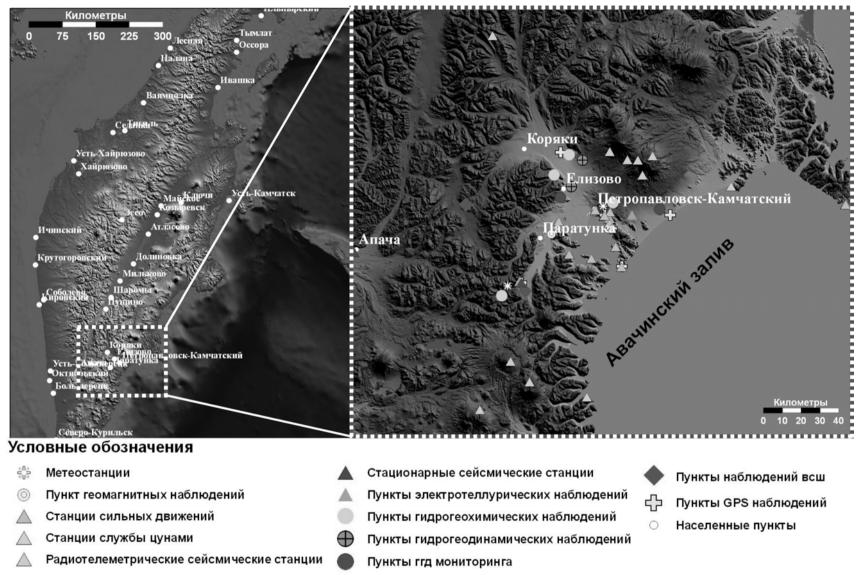


Рис. 1. Карта Камчатки и Петропавловского геодинамического полигона; расположение станций КФ ГС РАН по видам наблюдений и населенных пунктов

региональный каталог землетрясений; геологическую, тектоническую, геоморфологическую карты, схемы аномалий магнитного и гравитационного полей, а также контуры надежной регистрации землетрясений различных энергетических классов и границу планшета ответственности КФ ГС РАН [1].

В работе представлены возможности совместного использования ИС «POLYGON» и технологии географической информационной системы (ГИС) для решения сейсмологических, геофизических и других задач комплексного геофизического мониторинга Камчатского сейсмоактивного региона.

Информация об объектах и пунктах наблюдений, отображенных в ГИС-проекте, содержится в ряде публикаций и в сети Интернет [2, 3, 6, http://www.emsd.iks.ru/observations.php], а также в ежегодных научно-технических отчетах КФ ГС РАН. Эта информация систематизирована в таблицах, которые включались в состав базы геоданных. База геоданных содержит набор тем, которые могут включать в себя растровые изображения, атрибутивные таблицы и т. д. При отображении атрибутивных таблиц предусматривалась возможность отображения их содержания полностью, а также возможность отображения их содержания по отдельным объектам. Таблицы представляют собой компоненты базы данных, содержащие набор строк и столбцов. При этом каждая строка представляет собой географический объект, а информация в столбцах описывает специфическую характеристику объектов. При необходимости таблицы атрибутов могут отображаться в компоновке карт. Благодаря наложению карт возможен анализ расположения наблюдательных станций относительно тектонических, геологических и других условий.

В ГИС-проекте существует возможность модифицировать атрибуты для отображения изменений географических объектов. Присоединенная информация к пространственным данным дает возможность оценки взаимосвязей между объектами. Данные отображаются различными способами: единым символом, символами с градуированной цветовой шкалой и размерами. Отображение данных единым символом дает представление о расположении объектов, их группировании и распределении. Изменение цвета знака, обозначающего объекты, представляет другой способ представления количественных данных. В картах с градуированной цветовой шкалой используются наборы знаков, цветовая гамма которых изменяется в соответствии со значениями определенного атрибута. Такой способ наиболее удобен для отображения ранжированных данных или данных, связанных с какойлибо числовой прогрессией. Примером являются данные каталога землетрясений, различающихся по глубинам гипоцентров.

Карта с градуированными символами отображает объекты, изменяя размер символа по какому-либо атрибуту. Например, этот прием использовался для отображения землетрясений с различными величинами энергетических классов в теме землетрясения. В ГИС-проекте данные отображаются как в виде единой таблицы, так и по одному или нескольким объектам. Для этого применяются идентификация и гиперссылки. Идентификация осуществляется с помощью инструмента идентификация, что позволяет отображать хранимые в таблице данные, привязанные к слою. Большие возможности предоставляет идентификация с применением гиперссылок, с помощью которых открываются и просматриваются документы Word, Excel, фотографии, рисунки, видео файлы и т. д.

В ГИС-проекте тема «землетрясения» загружается с использованием текущего каталога землетрясений зоны ответственности КФ ГС РАН. Это позволяет при обновлении каталога автоматически обновлять данные проекта. Благодаря этому имеется возможность анализировать пространственную структуру распределения произошедших землетрясений, формировать запросы к обновленному каталогу и создавать карты, с использованием последних данных. Для отображения эпицентров землетрясений на карте используется автоматизированная система построения запросов, которая представляет собой форму, в которую заносятся необходимые данные. После нажатия кнопки «Выполнить запрос» в слое «Землетрясения» формируется определяющий запрос. Благодаря данной системе можно осуществлять выборки землетрясений из каталога с различными величинами энергетических классов землетрясений, в различных диапазонах глубин и интервалов времени (рис. 2).

Окончательное внешнее оформление карт осуществляется с помощью компоновки. В ГИСпроекте создавались компоновки с добавлением таких элементов как масштабная линейка, стрелка севера, легенда, градусная сетка и прочее. Стрелка севера показывает ориентацию карт; масштабные линейки представляют собой визуальные указатели размеров объектов и расстояний между ними; легенда раскрывает смысл картографических знаков и состоит из образцов условных обозначений

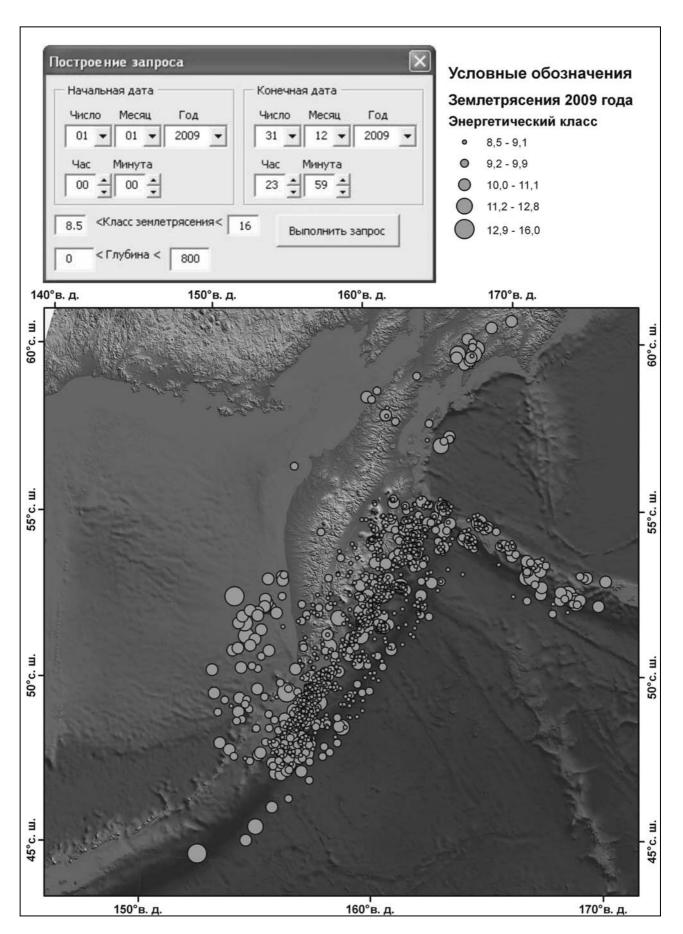


Рис. 2. Карта Камчатки с градуированными символами, отображающими землетрясения 2009 г. с различными величинами энергетических классов и глубин гипоцентров, построенная с помощью автоматизированной системы запросов.

карты, сопровождаемых текстовыми пояснениями (рис. 1, 2). После создания необходимой карты предусмотрена возможность ее печати или экспортирования в различные графические форматы.

Заключение

Созданный ГИС-проект в настоящее время включает набор тем:

- топографическую основу, гидрографию;
- данные о расположении населенных пунктов и пунктов по различным видам наблюдений с возможностью просмотра текущих графиков гидрогеодинамических и электротеллурических наблюдений;
- региональный каталог землетрясений с возможностью его обновления;
- геологическую карту масштаба 1:200000, тектоническую и геоморфологическую схемы, карты аномалий магнитного и гравитационного полей в масштабе 1:500000 для территории Петропавловского полигона и др., которые привязаны к единой системе координат.

ГИС-проект также включает базу геоданных, содержащую данные об отображаемых объектах, в т. ч. их координаты и названия. На дополнительную информацию об объектах, представленную в таблицах, содержащих сведения о станциях, скважинах, вулканах, населенных пунктах, реках и др., организованы гиперссылки.

Представленный в настоящей работе ГИС-проект является важным информационной системы комплексных геофизических наблюдений на Камчатке, т. к. отображает «нетрадиционных» видов наблюдений. состояние системы таких как скважинные гидрогеодинамические и гидрогеохимические, электротеллурические и другие совместно с сейсмологическими данными. Информация в ГИС-проекте представлена таким образом, чтобы было возможным идентифицировать объекты, предоставлять эффективный доступ к дополнительным данным об объектах и проводить различные аналитические процедуры. Также предусмотрены различные способы отображения данных для увеличения информативности карт, использованных при создании проекта. ГИС-проект, наряду с функционирующей в КФ ГС РАН ИС «POLYGON», может эффективно использоваться для оценки состояния наблюдательной сети по различным видам наблюдений при проведении комплексного геофизического мониторинга территории Камчатского края.

Список литературы

- 1. Иванов В.Ю., Касимова В.А. Создание макета ГИС-проекта «Петропавловский геодинамический полигон» для информационного обеспечения системы комплексных геофизических наблюдений» // Вестник КРАУНЦ. Науки о Земле. 2009. № 1. Вып. 13. С. 231-236.
- 2. Комплексные сейсмологические и геофизические исследования Камчатки. Петропавловск-Камчатский: Камчатский печатный двор, 2004. 445 с.
- 3. Копылова Г.Н. Изменения уровня воды в скважине ЮЗ-5, Камчатка, вызванные землетрясениями // Вулканология и сейсмология. 2006. № 6. С. 52-64.
- 4. Копылова Г.Н., Латыпов Е.Р, Пантюхин Е.А.. Информационная система «Полигон»: комплекс программных средств для сбора, хранения и обработки данных геофизических наблюдений // Проблемы сейсмологии III-го тысячелетия. Матер. междунар. геофиз. конф. Новосибирск: Изд-во CO PAH, 2003. С. 393–399.
- 5. Копылова Г.Н., Иванов В.Ю., Касимова В.А. Разработка элементов информационной системы комплексных геофизических наблюдений на территории Камчатки // Российский журнал наук о Земле. Том 11. http://elpub.wdcb.ru/journals/rjes/doi/2009ES000329.html
- 6. Салтыков В.А., Чебров В.Н., Синицын В.И. и др. Организация наблюдений сейсмических шумов вблизи сейсмофокальной зоны Курило Камчатской островной дуги // Вулканология и сейсмология. 2006. № 3. С. 43-53.
- 7. Федотов С.А., Соломатин А.В., Чернышев С.Д. Афтершоки и область очага Средне-Курильского землетрясения 15.XI 2006 г., M_s =8.2; Долгосрочный сейсмический прогноз для Курило-Камчатской дуги на IV 2008 III 2013 гг. // Вулканология и сейсмология. 2008. № 6. С. 3-23.
- 8. Чебров В.Н. Комплексный мониторинг геодинамических процессов Камчатки: проблемы готовности к сильному землетрясению // Геофизический мониторинг Камчатки. Матер. научн.-техн. конф. Петропавловск-Камчатский: Оттиск, 2006. С. 3-11.
- 9. Чебров В.Н. Проблемы комплексного геофизического мониторинга и предупреждения природных катастроф на Камчатке // Геофизический мониторинг и проблемы сейсмической безопасности Дальнего Востока России. Тр. региональной научно-техн. конф. Т. 1. Петропавловск-Камчатский: ГС РАН, 2008. С. 13-20.
- 10. Чебров В.Н., Салтыков В.А. Мониторинг и прогноз сейсмической и вулканической активности Камчатского региона // Геофизика XXI столетия: 2007 год. Сб. тр. Девятых геофиз. чтений им. В.В. Федынского. Тверь: ООО «Издательство ГЕРС», 2008. С. 203-208.