УДК 550.34 + 551.24 ОСОБЕННОСТИ ВУЛКАНИЧЕСКОЙ АКТИВНОСТИ ОКРАИН ТИХОГО ОКЕАНА ЗА ПОСЛЕДНИЕ 12 ТЫС. ЛЕТ

Акманова Д.Р.

Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский Dinara@kscnet.ru

Введение

Многими исследователями неоднократно обсуждался вопрос о взаимосвязи сейсмического и вулканического процессов. Действительно, подавляющая часть землетрясений планеты, в т. ч. все самые сильные из них, происходят в пределах сейсмических поясов. Вблизи сейсмических поясов расположены активные вулканы. Как отмечалось в [1, 8, 9, 10, 11, 13], для разных регионов прослеживается корреляция между извержениями вулканов и временами сильных землетрясений. Эти данные свидетельствуют, вероятно, о едином энергетическом источнике данных процессов [2].

В работе приводится описание мировой базы данных по известным (датированным) извержениям вулканов, составленной для последних 12 тыс. лет. На основе этой базы данных исследуются пространственно-временные закономерности проявления вулканического процесса в пределах окраин Тихого океана.

Исходные данные

С целью изучения закономерностей вулканической активности создана электронная база, включающая данные об извержениях вулканов мира. Формат базы аналогичен формату базы данных для землетрясений [5]. База данных, составленная на основании анализа имеющихся каталогов извержений вулканов мира [6, 17, 18], включает все n=6228 известные (датированные) извержения вулканов за последние 12 тыс. лет с 9850 г. до н. э. по 2005 г., N=570. В базе содержатся данные о следующих параметрах вулканов и их извержений: дата извержения (год, месяц, день), координаты вулкана (долгота и широта в градусах), объем изверженного ювенильного материала (W, M^3) [5].

В соответствии со шкалой, принятой в [17, 18], все извержения классифицировались по величине W=1, 2, ..., 7, которая соответствует объемам $10^{4.5}, 10^6, ..., 10^{11}$ м³ соответственно (табл. 1). При определении объемов некоторых наиболее сильных извержений использовались неопубликованные данные, предоставленные И.В. Мелекесцевым.

Таблиі	ца 1. Зна	ачения чі	исел изверх	кений и о	бъемов	изверженного	о материала,	, содержащи	хся в базе
данных за пери	юд 9850) д.н.э20	005 гг. по [6, 17, 18].					

Значения объемов изверженного материала, <i>W</i>	1	2	3	4	5	6	7
Объем, м ³	104-5	10^{6}	107	10^{8}	10^{9}	10^{10}	10 ¹¹
Число извержений в базе, <i>n</i>	1070	3662	957	356	120	57	6

На рис. 1 представлен график чисел извержений вулканов мира с *W*≥1, содержащихся в базе.

Рис. 1. Числа извержений вулканов мира за последние 12 тыс. лет (с усреднением по 250 лет).

Увеличение чисел извержений может быть объяснено факторами, связанными с появлением письменности и освоением новых территорий. Из данных, приведенных на рис. 1, видно, что числа извержений вулканов имеют некоторую гармоническую составляющую. Для ее определения зависимость N(t) (рис. 1) разлагалась в ряд Фурье. Амплитуды выявленных гармоник приведены на рис. 2. Видно, что наибольшие значения ~0.3^{*} имеют амплитуды двух гармоник с периодами T_1 =1600±110 лет и T_2 =2400±140 лет.

Рис. 2. Фурье-анализ чисел извержений. А – относительная амплитуда гармоник, Т – период.

Известно, что наиболее активным вулканическим регионом планеты является окраина Тихого океана. Действительно, из N=570 вулканов мира, извергавшихся n=6228 раз за последние 12 тыс. лет, 364 (61%) вулканов и 5353 (86%) извержений приходится на окраину Тихого океана. Из них n=155 извержений N=81 вулканов имели величину $W \ge 5$ (86%) и n=55 извержений N=41 вулканов - $W \ge 6$ (95%).

Обзор опубликованных данных по миграции вулканической активности

Рядом авторов отмечена миграция вулканической активности («перемещение» в одну сторону с определенной скоростью V) (табл. 2), как в пределах отдельно взятых вулканических центров со скоростью $V=3\cdot10^{-5} \div 2\cdot10^{-3}$ км/год [7, 12, 14, 15], так и в пределах вулканических дуг - V=100 и 900 км/год [2, 10, 16].

Регион	L, км	Т, млн. лет	V, км/год	Литературный источник
Гавайско-Императорский хребет (Тихий океан)	6000	0÷75-80	(78±3)·10 ⁻⁴	[7, 12]
Хребет Луисвилль (Тихий океан)	4300	0.5÷70	0.7	[7, 15]
Восточно–Каролинские о-ва (Тихий океан)	1500	1÷2	11.0±0.4	[7]
Восточно-Индийский хребет (Индийский океан)	5000	81÷38	1.0±0.3	[7]
Калифорнийская зона (США)	1300	20÷25	0.6	[7]
Зона Бразес (США)	250	10	25·10 ⁻⁴	[7]
Горы Сан-Франциско	250	15	$16 \cdot 10^{-4}$	[7, 14, 13]
Зона Джеймз (США)	84.3	8.2÷11.8	6·10 ⁻⁴	[7]
Кенийский рифт (Африка)	600	0.9÷10	0.1±0.06	[7]
В береговых хребтах Калифорнии (США)	220	0.01÷23.1	0.1±0.01	[7]
Центральная Америка	90	4÷17	12.10-4	[7]
Центральный участок Восточной Камчатки (Россия)	250	50÷80	3.10-5	[7]
Центральная и Южная Америки	10000	ХХ в.	900	[10]
Алеутские острова – Аляска (США)	4000	XX в.	100	[16]
Северо-западная окраина Тихого океана	9000	XX B.	100	[2]

Таблица 2. Значения скоростей миграции вулканической активности по данным разных авторов.

Примечание: L – протяженности вулканических районов, T – продолжительность временных интервалов, V – скорость миграции вулканической активности по данным разных авторов.

^{*} Вывод о максимумах спектра необоснован без учета доверительного интервала. – Прим. ред.

В работе [2] было установлено существование на региональном уровне корреляции между извержениями вулканов и сильнейшими землетрясениями. На основании этого сделан вывод о миграции вулканической активности вдоль северо-западной окраины Тихого океана со скоростью около 100 км/год. Как видим, разными авторами, независимо друг от друга, были выявлены пространственно-временные закономерности в распределении извержений, а именно их миграция, значения скоростей которой находятся в пределах $10^{-5} \div 10^3$ км/год (табл. 2). Разброс величин скоростей миграции вулканических извержений, по видимому, связан с «разномасштабными» закономерностями проявления вулканической активности, которые характерны для разных вулканических центров планеты в течение различных временных интервалов.

Миграция извержений

Исследование свойств пространственно-временного распределения извержений тихоокеанских вулканов проводилось на плоскости с осями «расстояние по дуге $0 \le L \le 45400$ км – время извержений *t*». В качестве расстояния вдоль дуги выбрана линия, примерно совпадающая с осями глубоководных желобов и границами тектонических плит [3, 4] (рис. 3).

Рис. 3. Положение вулканов в пределах окраины Тихого океана. 1 – местоположения вулканов; 2 – линия, вдоль которой определялись пространственные координаты вулканов и их извержений; 3 – «крайние» вулканы тихоокеанской окраины: А – вулкан Бакл Айленд и Б – вулкан Десепшен.

Общая протяженность «окраинной» линии, изображенной на рис. 3 от вулкана Бакл Айленд (Антарктика) до Десепшен (Южные Шетландские острова) составляет L=45400 км [3, 4, 5].

Для исследования миграции вулканической активности были выбраны наиболее сильные извержения тихоокеанских вулканов с $W \ge 6 (\ge 10^{10} \text{ м}^3)$, произошедшие в течение последних 2250 лет. Их количество составляет *n*=25, *N*=22. Данные об этих извержениях приведены в табл. 3.

N⁰	Дата извержения (год, месяц, день)	ф, широта, град.	λ, долгота, град.	W	Название вулкана	Район
1	-250 до н.э.	-29.27	-177.92	6	Рауль	о-ва Кермадек
2	-100 до н.э.	53.43	-168.13	6	Окмок	Алеутские о-ва
3	50.00.00	-16.25	168.12	6	Амбрим	о-ва Новые Гибриды
4	60.00.00	61.38	-141.75	6	Чурчил	Аляска
5	240.00.00	51.8	157.53	6	Ксудач	Россия
6	416.00.00	-6.1	105.42	6	Кракатау	Индонезия
7	450.00.00	13.67	-89.05	6	Илопанго	Центральная Америка
8	540.00.00	-4.27	152.2	6	Рабаул	о. Новая Британия
9	700.00.00	61.38	-141.75	6	Чурчил	Аляска
10	710.00.00	-5.58	150.52	6	Паго	о. Новая Британия

Таблица 3. Извержения тихоокеанских вулканов с *W*≥6 в интервале времени с 250 г. до. н.э. по 1991 г.

проде	листистиолицы с	,				
11	800.00.00	-5.06	150.11	6	Дакатау	о-в Новая Британия
12	930.00.00	21.13	-104.51	6	Цеборуко	Центральная Америка
13	1030.00.00	-6.09	155.23	6	Билли Митчел	о-в Бугенвиль
14	1280.00.00	-0.85	-78.9	6	Куилотоа	Южная Америка
15	1452.00.00	-16.83	168.54	6	Кувае	о-ва Новые Гибриды
16	1580.00.00	-6.09	155.23	6	Билли Митчел	о-в Бугенвиль
17	1600.02.19	-16.61	-70.85	6	Уйанапутина	Южная Америка
18	1660.00.00	-5.36	147.12	6	о-в Лонг	о-в Новая Гвинея
19	1815.00.00	-8.25	118	7	Тамбора	Индонезия
20	1835.01.20	12.98	-87.57	6	Косигуина	Центральная Америка
21	1883.05.20	-6.1	105.42	6	Кракатау	Индонезия
22	1912.06.06	58.27	-155.16	6	Новарупта	Аляска
23	1902.10.24	14.76	-91.55	6	Санта Мария	Центральная Америка
24	1932.04.10	-35.65	-70.76	6	Сьерро Азул	Южная Америка
25	1991.04.02	15.13	120.35	6	Пинатубо	Филиппинские о-ва
		(

Продолжение таблицы 3

Примечание: φ – широта (северная – положительная; южная – отрицательная) и λ – долгота (восточная – положительная; западная – отрицательная) вулкана.

Карта расположения извержений на плоскости приведена на рис. 4. Извержения с $W \ge 6$ (N=19, n=21) за период с 250 г. до н.э. по 1932 г. имеют тенденцию группироваться в пределах достаточно узких областей, обозначенных на рис. 4 цифрами 1, 2, ..., 7.

Рис. 4. Расположение тихоокеанских вулканов и их извержений с $W \ge 6$ (N=19, n=21) на пространственно–временной карте за период 250 до н.э.-1932 гг. 1 – номера линий (p=1, 2, ..., 7), параметры которых, определенные методом наименьших квадратов^{*}, и величины среднеквадратических отклонений приведены в табл. 4; 2 – «прогнозная» область для извержений вулканов с $W \ge 6$ в 1815-1991 гг.

Выделенные на рис. 4 области миграции извержений имеют примерно одинаковые наклоны, отделяются друг от друга протяженными «пустыми» коридорами и следуют друг за другом через близкие по длительности интервалы времени *T*. Определенные методом наименьших квадратов параметры цепочек извержений, заключенных в пределах узких областей, аппроксимированы отрезками прямых. Их параметры приведены в табл. 4.

р	k	а, км/год	Т, год
1	3	77	308
2	3	69	401
3	3	49	193
4	3	112	291
5	2	112	371
6	2	220	224
7	5	97	
		105 ± 37	280 ± 64

Таблица 4. Параметры миграционных цепочек извержений с *W*≥6.

Примечание: p – порядковый номер области на puc. 4; k – количество извержений вулканов, попадающих в пределы области; a – значение «угла наклона» области; T – интервал времени между миграционными областями.

^{*} Линии доверительного интервала не должны быть параллельными прямыми – Прим. ред.

В результате проведенного исследования можно предположить, что пространственновременное распределение извержений в 250 до н.э.-1932 гг., соответствует гипотезе миграции [5], согласно которой извержения вулканов с $W \ge 6$ мигрируют по часовой стрелке от о-вов Новой Зеландии к Южной Америке вдоль окраин Тихого океана со скоростью $V=100\pm40$ км/год. На рис. 4 представлена область, в пределах которой в соответствии с гипотезой миграции, должны происходить следующие после цепочки p=7 извержения. Видно, что из четырех последних извержений с $W \ge 6$, произошедших в 1815-1991 гг., три попадают в пределы «прогнозной области». Это позволяет с высокой вероятностью принять гипотезу о миграции вулканических извержений с $W \ge 6$ вдоль окраин Тихого океана в период с 250 до н.э.-1991 гг. в направлении от Новой Зеландии, через Японию, Курильские острова, Камчатку, Алеутские острова к Южной Америке со скоростью $V \approx 100 \pm 40$ км/год [5].

Заключение

С целью исследования геодинамического планетарного процесса была составлена база данных, включающая все известные (датированные) данные об извержениях вулканов (9850 до н.э.-2005 гг., n=6228, N=570) планеты. С привлечением большого количества данных об извержениях тихоокеанских вулканов с $W \ge 6$, произошедших в период 250 до н.э.-1991 гг., получена оценка скорости миграции вулканической активности. Значение скорости миграции извержений составляет $V \approx 100$ км/год в направлении от Новой Зеландии, через Японию, Курильские острова, Камчатку, Алеутские острова в сторону Южной Америки.

Список литературы

 Абдурахманов А.И, Федорченко В.И. О возможном истолковании пространственно-временных связей сейсмических и вулканических явлений в Курило-Камчатской зоне // Вулканизм Курило-Камчатского региона и острова Сахалин. Труды СахКНИИ ДВНЦ АН СССР. Южно-Сахалинск, 1976. Вып. 48. С. 6-16.
Викулин А.В. Физика волнового сейсмического процесса. Петропавловск-Камчатский: КГПУ, 2003. 150 с.
Викулин А.В., Водинчар Г.М. Спектр энергии потока сейсмичности // Матер. ежегодной конференции, посвященной дню вулканолога. Петропавловск-Камчатский: ИВиС ДВО РАН, 2005. С. 167-174.

4. Викулин А.В., Водинчар Г.М. Волны миграции сейсмической энергии // Тектоника, глубинное строение и минерагения востока Азии. V Косыгинские чтения. Хабаровск. 24-27 января, 2006. Хабаровск, 2006. С. 206-209.

5. Викулин А.В., Водинчар Г.М., Мелекесцев И.В. и др. Моделирование геодинамических процессов окраины Тихого океана // Солнечно-земные связи и предвестники землетрясений. Сборник докладов IV междунар. конф. 14-17 августа 2007 г. ИКИР ДВО РАН, 2007. С. 275-280.

6. Гущенко И.И. Извержения вулканов мира. М.: Наука, 1979. 339 с.

7. Леонов В.Л. О некоторых закономерностях развития гидротермальной и вулканической деятельности на Камчатке // Вулканология и сейсмология. 1991. № 2. С. 28-40

 8. Токарев П.И. О связи вулканической и сейсмической активности в Курило-Камчатской зоне // Вулканизм Камчатки и Курильских островов. Тр. лаб. вулканологии. Вып. 17. М.: Из-во АН СССР, 1959. С. 156-182.
9. Широков В.А. Связь извержений вулканов Камчатки с землетрясениями верхней мантии // Бюл. вулканол. станций. № 54. М.: Наука, 1978. С. 3-8.

10. Berg E., Sutton G.H. Dynamic interaction of seismic and volcanic activity of the Nazca plate edges // Phys. of the Earth and Plan. Inter. 1974. № 9. P. 45-68.

11. Carr M.J., Stoiber R.E. Intermediate depth earthquakes and volcanic eruptions in Central America, 1961-1972 // Bull. Volcan. 1974. № 3. 87 p.

12. Clague D.A., Dalrymple G.B. The Hawaiian – Emperor volcanic chain. Part I. Geologic Evolution // Volcanism in Hawaii. Chapter I. U.S. Geol. Survey Prof. Paper 1350. Washington, 1987. P. 5-54.

13. Gresta S., Marzocchi W., Mulargia F. Is there a correlation between larger local earthquakes and the end eruptions at mount Etna volcano, Sicily // Geophys. J. Int. 1994. 116. № 1. P. 230-232.

14. Kenneth L., Tanaka E. M., Shoemaker G. et al. Migration of volcanism in the San Francisco volcanic field, Arizona // GSA Bulletin. February 1986. V. 97: № 2. P. 129-141.

15. Lonsdale P. Geography and history of the Louisville hot spot chain in the southwest Pacific // J. Geophys. Res. 1988. V. 93. № 34. P. 3078-3104.

16. Sauers J. The westward migration of geophysical events in the Aleutians, Springs, 1986 // Cycles. 1986. 37. № 9. P. 203-204.

17. Simkin T., Siebert L. Volcanoes of the world (catalogue). Published in association with the Smithsonian Institution, 1993. 350 p.

18. Smithsonian Institution – Global Volcanism Program_ Worldwide Holocene Volcano and Eruption Information (http://www.volcano.si.edu)