МОДЕЛИ ГЕОМАГНИТНЫХ ВАРИАЦИЙ, ОБУСЛОВЛЕННЫЕ ПРОЦЕССАМИ В ЗЕМНЫХ ОБОЛОЧКАХ

Шереметьева О.В.

Камчатский государственный университет им. Витуса Беринга, Петропавловск-Камчатский, sheremolga@yandex.ru

Введение

К решению актуальной проблемы прогноза землетрясений подходят с двух сторон: вопервых, исследуют процессы, происходящие в очаговой области землетрясения, во-вторых, ищут предвестники в регистрируемых временных рядах данных. На сегодняшний день единой точки зрения на теорию строения геофизической среды не существует. Однако большинство исследователей считают, что землетрясение - это подвижка по разрыву или системе разрывов [1]. Неясными остаются детали самого процесса разрыва. В частности, методы сейсмологии позволяют лишь приблизительно определить параметры разрыва. В связи с этим, ценной является любая дополнительная информация о процессах в очаге землетрясения, которая может быть получена путём регистрации и интерпретации вариаций магнитного поля в области пространства вблизи очага и электромагнитных излучений из очаговой области, сопровождающих землетрясения. Но интерпретировать регистрируемые данные невозможно без построения моделей источников таких геомагнитных вариаций и разделения в вариациях планетарного и местного вкладов на основании анализа свойств моделей.

Модель литосферного источника вариаций

Рассмотрим очаг землетрясения сложенный магнитоактивными породами, такими, как габбро, гранодиорит, биотитовый и лейкократовый граниты, габбро-диорит [5]. Породы земной коры и литосферы, обладающие ферромагнитными свойствами, намагничиваются статичным магнитным полем Земли и, в результате действия коэрцитивных сил, магнитный момент области, представленной магнитоактивными материалами, оказывается «вмороженным» в вещество [3]. В процессе подвижки по разрыву при землетрясении, а также и при медленных движениях, сброс упругих напряжений сопровождается вращением вещества очаговой зоны и, соответственно, вектора магнитного момента **M**(t) этой области, что приводит к возмущениям магнитного поля в окружающем пространстве.

В разрабатываемой модели изменение вектора магнитного момента $\mathbf{M}(t)$ во времени происходит по закону $\Delta \mathbf{M}(t) = [\mathbf{M}(t) \times (\Delta \phi(t) \mathbf{k})]$, где \mathbf{k} – единичный вектор, перпендикулярный поверхности, в которой происходит вращение вектора $\mathbf{M}(t)$; $\phi(t)$ – зависимость изменения угла поворота от времени, которую аппроксимируем следующими зависимостями, обеспечивающими плавное изменение со временем угла $\phi(t)$, непрерывность его первой производной и кусочную непрерывность второй производной,

$$\varphi(t) = \begin{cases} \frac{\beta}{2} \cdot \frac{(t - t_0)^2}{\tau^2}, & t_0 \le t \le t_0 + \phi \\ -\frac{\beta}{2} \cdot \frac{(t - (t_0 + 2\tau))^2}{\phi^2} + \beta, & t_0 + \phi < t \le t_0 + 2\phi \end{cases}$$

где β – угол поворота вектора **M**(t) в результате подвижки на вектор 2d, 2 τ - полное время поворота на угол β .

Магнитный момент $\mathbf{M}(t)$ ферромагнетиков очаговой области создаёт в окружающем пространстве собственное магнитное поле с индукцией \mathbf{B}_{cofcr} . Вращение вещества очаговой области в момент землетрясения (рис. 1) приводит к вращению «вмороженного» в него магнитного момента $\mathbf{M}(t)$ и соответственно к изменению вектора \mathbf{B}_{cofcr} индукции магнитного поля в каждой точке окружающего пространства, что, в результате, приводит к вариациям $d\mathbf{B}_{cofcr}$ магнитной индукции. Вариации индукции магнитного поля оценивались по формуле $d\mathbf{B}_{cofcr} = [\mathbf{B}_{cofcr} \times d\mathbf{\phi}(t)]$. Запаздыванием потенциалов пренебрегали, т.е. оценка была выполнена в квазистатическом приближении. Для оценки значений вектор магнитной индукции \mathbf{B}_{cofcr}

представляем дипольной составляющей изменяющегося магнитного поля [3]: $\mathbf{B}_{\text{собст}} = \mu \mu_0 \cdot \frac{3\mathbf{r} \cdot (\mathbf{M} \cdot \mathbf{r}) - \mathbf{M} \cdot \mathbf{r}^2}{r^5}, \quad \text{где } \mathbf{r} - \text{радиус-вектор точки, в которой мы ищем значение}$

Рис. 1. Схематичное изображение очаговой области (очерчена пунктиром) и вектора магнитного момента **M**: *a*) до землетрясения – точки L и N расположены в центре разрыва на противоположных бортах точно друг напротив друга; *б*) после землетрясения.

вариаций $d\mathbf{B}_{cofer}$ индукции магнитного поля, μ_0 – магнитная постоянная, μ – относительная магнитная проницаемость вне очаговой области (μ = 1).

Значения магнитной индукции \mathbf{B}_{cofer} рассчитывались при землетрясениях с магнитудами m = 5 и m = 6 на расстоянии r = 250 км от их очагов. При землетрясении с магнитудой m = 5 радиус его очаговой зоны составляет 4 - 5 км, с магнитудой m = 6 около 15 км [2]. Вариации d \mathbf{B}_{cofer} магнитной индукции в результате подвижки оценивались по формуле d $\mathbf{B}_{cofer} = \mathbf{B}_{cofer} \cdot \boldsymbol{\beta}$, в которой векторы магнитной индукции \mathbf{B}_{cofer} и угла поворота вещества очаговой зоны d $\boldsymbol{\phi}(t)$ полагались перпендикулярными (рис. 1).

Рис. 2. Модель кольцевого тока в ядре и магнитосфере Земли. Вид со стороны нулевого меридиана.

На основании исследованной модели намагниченного литосферного блока, испытывающего сейсмические воздействия, теоретические расчёты вариаций напряжённости

магнитной индукции в ближней зоне для намагниченных пород дали значения *порядка от единиц до десятков нТл* при землетрясениях с магнитудами m = 5 и m = 6, что согласуется с имеющимися наблюденными данными. Такие значения магнитной индукции регистрируются современной аппаратурой, что может позволить выполнить независимые оценки параметров разрыва в очаге землетрясения, в частности, очаговой длительности (2 τ).

Модель приливного воздействия на источники геомагнитного поля

Магнитное поле Земли, в соответствии с современными представлениями, порождается сложными МГД-процессами в жидком ядре Земли и токами, которые протекают в магнитосфере [6]. На основании этих представлений, в принятой нами модели сложные МГД-процессы в ядре Земли аппроксимируются кольцевым током, текущим, как предполагается, в плоскости экватора жидкого ядра. Кольцевые токи в магнитосфере, протекающие на расстояниях 2 – 7 радиусов Земли, считаются сосредоточенными в плоскости эклиптики (рис. 2).

В принятой модели предполагается, что источники геомагнитного поля Земли откликаются на приливные воздействия, и, как следствие, токовые контуры магнитосферы и ядра Земли деформируются, и тем самым порождают вариации геомагнитного поля с частотами приливных волн. В результате такой деформации ток будет течь по деформированному контуру. Исчезновение тока в недеформированном контуре и появление его в деформированном в масштабе планеты эквивалентно появлению составляющей геомагнитных вариаций с частотами приливных волн (рис. 3). Недеформированный токовый контур разобьём на элементы dl, каждый с током І. В результате приливных деформаций ядра и магнитосферы, каждый из элементов dl, недеформированного контура смещается на вектор **h** приливной деформации. Смещение из-за приливных деформаций элементов тока эквивалентно наложению на недеформированный контур замкнутых, заполняющих сегменты целиком, элементарных контуров с током I (один из элементарных контуров на рисунке заштрихован). Токи смежных сторон, соседних элементарных компенсируют друг друга. контуров. Аналогично, компенсируют друг друга ток недеформированного контура и наложенные на него токи всех элементарных контуров.

Рис. 3. Изменение формы токового контура в результате воздействия приливных волн.

Магнитный момент каждого элементарного контура рассчитывался по формуле $\mathbf{dM} = \left[\left(\mathbf{I} \cdot \mathbf{dI} \right) \times \left(\mathbf{h} \cdot \frac{\mathbf{r}_{\text{core}}}{\mathbf{r}_{\text{E}}} \right) \right] = \frac{\mathbf{I} \cdot \mathbf{r}_{\text{core}}}{\mathbf{r}_{\text{E}}} \left[\mathbf{dI} \times \mathbf{h} \right], \quad \text{где } \mathbf{r}_{\text{core}} - \text{ радиус ядра Земли, } \mathbf{r}_{\text{E}} - \text{ радиус Земли.}$

Приливная составляющая магнитного поля, которая вычислялась как суммарный вклад всех элементарных контуров четырёх сегментов, и является источником геомагнитных вариаций с частотами приливных волн. Вектор приливных деформаций **h** оценивался следующим образом: во-первых, для каждой из приливных волн вектор **h** считался сонаправленным вектору приливной силы $(-\nabla \mathbf{W})$ [4]; во-вторых, приливное смещение элементов поверхности жидкого ядра Земли и токовых элементов магнитосферы считались равными тем, какие были бы в полностью жидком

теле: $\mathbf{h}_{z} = \mathbf{W}/\mathbf{g}$, где \mathbf{g} – ускорение свободного падения, а система координат связана с точкой наблюдения [4] (ось X направлена на север, Y – на восток, Z – к центру Земли [6]). Вклад d **B** в магнитные вариации от каждого элементарного контура рассчитывался на основании закона Био– Савара–Лапласа [3], $d\mathbf{B} = \frac{\mu}{4\pi} \cdot \frac{\mathbf{I} \cdot \mathbf{r}_{core}}{\mathbf{r}_{E}} \left(\frac{3\mathbf{r} \cdot ([\mathbf{d}\boldsymbol{l} \times \mathbf{h}] \cdot \mathbf{r})}{r^{5}} - \frac{[\mathbf{d}\boldsymbol{l} \times \mathbf{h}]}{r^{3}} \right)$, где \mathbf{r} – радиус-вектор от точки наблюдения к токовому контуру. Полные вариации $\mathbf{B} = \oint d\mathbf{B}$ вычислялись для разных фаз l

приливных волн O_1 и M_2 на всех широтах. Данная модель позволила оценить значения вариаций магнитной индукции для фаз приливных волн O_1 и M_2 на всех широтах.

Рассчитанные значения амплитуд вариаций на разных широтах от *источника*, находящегося *в ядре Земли*, составляют $(0.5 \div 8.4) \cdot 10^4$ нТл при изменении фазы приливной волны M_2 от 0 до 2π и $(0.5 \div 6.8) \cdot 10^{-4}$ нТл при изменении фазы приливной волны O_1 в том же диапазоне. Рассчитанные значения вариаций магнитной индукции с периодом волны M_2 в районе обсерватории «Паратунка» составили $(1.2 \div 1.7) \cdot 10^{-4}$ нТл, а с периодом волны O_1 соответственно $(0.8 \div 1.4) \cdot 10^{-4}$ нТл. Вектор нормали плоскости годографа с периодом волны M_2 имеет координаты n_{M2} (0.68; 0.49; -0.54), а с периодом волны $O_1 - n_{O1}$ (0.44; 0.89; 0.11).

Рассчитанные значения геомагнитных вариаций для разных широт от *магнитосферного* источника при изменении от 0 до 2π фазы приливной волны M₂ составляют $0.1 \div 2.5$ нTл, а при таком же изменении фазы приливной волны O₁ соответственно $0.1 \div 1.5$ нTл. Рассчитанные значения вариаций магнитной индукции в районе обсерватории «Паратунка» для фаз приливной волны M₂ составляют $0.7 \div 1$ нTл, причём наибольшие значения соответствуют фазам $\pi/2$ и $3\pi/2$, а наименьшие значения соответствуют фазам π и 2π . Значения геомагнитных вариаций с периодом волны O₁ составляют $0.3 \div 1$ нTл, где наибольшие значения соответствуют фазам π и 2π , а наименьшие значения фазам $\pi/2$ и $3\pi/2$. На рис. 4 приведены проекции рассчитанных годографов составляющих вектора магнитной индукции с периодами волн M₂ (рис. 4a) и O₁ (рис. 46) для геофизической обсерватории «Паратунка» ($\phi = 52^{\circ}58.33'$ N, $\lambda = 158^{\circ}15.02'$ E) за период 2001 - 2003 гг. Вектор нормали к плоскости годографа вектора геомагнитных вариаций с периодом приливной волны M₂ имеет координаты \mathbf{n}_{M2} (0.74; 0.49; 0.48), а с периодом приливной волны O₁ – \mathbf{n}_{O1} (0.79; -0.26; 0.56).

Рис. 4. Проекции годографов составляющих вектора магнитной индукции *a*) с периодом волны M₂, *б*) с периодом волны O₁ для геофизической обсерватории «Паратунка» за период 2001-2003 гг. (источник вариаций расположен в магнитосфере Земли). Измерения по осям приведены в нТл.

В каждой точке земной поверхности годограф вектора вариаций магнитной индукции с периодами волн M_2 и O_1 имеет форму эллипса. Эллипс лежит в плоскости, ориентация которой в пространстве меняется в зависимости от географических координат точки наблюдения. В результате исследования разработанной модели приливного воздействия на источники магнитного поля Земли установлено, что оцененные значения вариаций от магнитосферных токов на четыре порядка выше вариаций от источника, расположенного в ядре Земли. Компоненты рассчитанного вектора магнитной индукции с периодами приливных волн O_1 и M_2 зависят от координат точки наблюдения и источников вариаций.

Выводы

В настоящей работе разработаны и проанализированы модели источников электромагнитных излучений, расположенных в литосфере, ядре и магнитосфере Земли.

На основании анализа рассчитанных значений геомагнитных вариаций установлено, что возможны регистрация и выделение геомагнитных вариаций от литосферного и магнитосферного источников. Теоретические оценки значений косейсмических вариаций имеют порядок от единиц до десятков нТл, а оценки геомагнитных вариаций с частотами приливных волн имеют порядок $0.1 \div 2$ нТл. Регистрируемый сигнал, после выделения планетарного вклада, может быть использован для выделения прогностических признаков и получения информации о процессах в очагах.

Список литературы

1. Гохберг М.Б., Моргунов В.А., Похотелов О.А. Сейсмоэлектромагнитные явления. М.: Наука, 1988. 174 с. 2. Гусев А.А., Мельникова В.Н. Связь между магнитудами – среднемировые и для Камчатки // Физика Земли. 1990. № 6. С. 55–63.

3. Ландау Л.Д., Лифшиц Е. Теория поля. М.: Гостехиздат, 1941. 283 с.

4. Мельхиор П. Земные приливы. М.: Мир, 1968. 374 с.

5. Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика / Под редакцией д.г.-м.н. Н. Б. Дортман. М.: Недра, 1984. 455 с.

6. Яновский Б.М. Земной магнетизм. Л., 1978. 592 с.