УДК 550.34.06.013.3 ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ АНАЛИЗ ЗЕМЛЕТРЯСЕНИЙ ВУЛКАНА КЛЮЧЕВСКОЙ ЗА 1999-2007 ГГ.

Сенюков С.Л., Нуждина И.Н., Дрознина С.Я.

Камчатский филиал Геофизической Службы РАН, Петропавловск-Камчатский, sva02@emsd.ru

Введение

Вулкан Ключевской (координаты вершины: 56° 04' с.ш., 160° 38' в.д.) – самый высокий, активный и мощный базальтовый вулкан Курило-Камчатской вулканической области. Абсолютная высота вулкана ~ 4750 м. Диаметр вершинного кратера, венчающего конус - около 700 м. Предлагаемая работа является продолжением исследований сейсмичности вулкана Ключевской, проведенных Горельчик В.И. и Гарбузовой В.Т. для периода времени 1978-1996 гг. [1].

Цель работы

Провести пространственно-временной анализ землетрясений вулкана Ключевской за

период с 01 января 1999 г по 30 апреля 2007 г. Исследовать поведение параметров землетрясений (наклона графика повторяемости γ (или b-value) и центра выделенной сейсмической энергии) с целью изучения предвестников извержений.

Методика исследований

За исследуемый период из каталога землетрясений Северной группы в радиусе 7 км от вулкана Ключевской и диапазоне глубин от −5 км до 35 км от уровня моря было выбрано 37266 землетрясений (из них 34720 – с Ks≥4.0), рис.1.

Рис. 1 Карта эпицентров (А) и проекция гипоцентров (Б) на вертикальный разрез вдоль линии АВ для землетрясений вулкана Ключевской за период с 01 января 1999 г по 30 апреля 2007 г. Окружность вокруг вулкана радиусом 7 км обозначает область выборки землетрясений.

В работе использовался пакет программ ZMAP [5], параметр γ (или b-value) вычислялся по формуле lg N = a - γK_s .

Для начала были построены: график зависимости глубины землетрясений в земной коре под вулканом от времени, рис.2, а также график изменения параметра γ и распределения количества землетрясений по глубине за исследуемый период, рис.3.

Рис.2 Изменение глубины землетрясений в земной коре под Ключевским вулканом во времени. Заштрихованные полосы показывают периоды извержений в центральном кратере.

Рис.3 Изменение параметра у (b-value) и количества землетрясений с глубиной.

Представленные графики наглядно показывают, что основная часть землетрясений происходит в верхнем и нижнем горизонтах под вулканом, в центральной части сейсмичность практически отсутствует. Поэтому мы решили отказаться от четырехслойной среды предложенной В.И. Горельчик [1], выделив только три горизонта (от –5 до 5 км; от 5 до 20 км и от 20 до 35 км). В двух первых слоях происходят, главным образом вулканно-тектонические землетрясения, возникающие в твердой среде под действием непрерывно меняющегося поля напряжений, которое создается вокруг магматических каналов, внедряющихся в постройку вулкана. В нижнем горизонте генерируется множество глубоких длиннопериодных землетрясений, природа которых вероятно связана с магматическими процессами.

Для каждого слоя были построены гистограммы изменения количества землетрясений и графики изменения параметра у во времени, рис.4.

Рис.4 Изменение количества землетрясений и параметра γ (b-value) по слоям во времени. Заштрихованные области показывают периоды извержений вулкана в центральном кратере.

Очевидно, что в диапазоне глубин от 5 км до 20 км, рис.4 Γ) параметр γ остается практически постоянным. В верхнем и нижнем горизонтах параметр γ , рис.4 Б, Е) меняется во времени. Причины изменения будут выясняться в ходе дальнейших детальных исследований.

Для каждого слоя были построены графики повторяемости, определено количество землетрясений, представительный класс (K_s), значение параметра γ за весь исследуемый период и по годам. Все полученные результаты были сведены в таблицу 1. Таблица 1. Представительный класс (K_s) и наклон графика повторяемости (γ) для землетрясений по 3 слоям.

	Слой А) от –5км до 5км			Слой Б) от 5км до 20км			Слой В) от 25км до 35км		
	N зем-й	Ks	γ	N зем-й	Ks	γ	N зем-й	Ks	γ
1999-07	13540	4.3	0.56	465	4.0	0.47	23260	4.8	1.25
1999	908	4.0	0.38	13	4.2	0.63	461	4.8	1.9
2000	1186	4.3	0.54	12			5		
2001	1368	4.0	0.42	47	4.0	0.3	915	4.7	1.62
2002	712	4.0	0.56	18			4991	4.8	1.19
2003	2550	5.0	0.77	18	5.1	0.74	4585	4.8	1.2
2004	2239	4.0	0.50	129	4.0	0.61	5070	4.3	0.98
2005	1357	4.6	0.85	29	4.1	0.66	2896	4.5	0.8
2006	251	4.0	0.84	121	3.7	0.63	3928	4.9	1.39
2007	2057	4.3	0.76	76	4.3	0.59	413	4.8	1.99

По результатам таблицы 1 можно сделать следующие выводы:

1) представительный класс для поверхностного слоя А) равен 4.3, а для слоя В) – 4.8;

- слой Б) имеет наименьшее (γ=0.47 за весь период исследований) и самое стабильное значение γ (изменяется от 0.3 до 0.74), это значение γ практически совпадает с многолетним значением γ=0.5 для региональных тектонических землетрясений;
- слой В) имеет самые большие значения γ от 0.8 до 1.99, что превышает значение для слоев А) и Б). Зарубежные коллеги, проводившие подобные исследования на вулканах Этна (Италия), Спурр и Сант-Хеленс (Аляска) связывают такие большие значения с наличием магматического очага [3, 4].

Следующим этапом исследований было изучение изменения положения центра выделенной сейсмической энергии, впервые рассмотренного в работе [2]. Для решения этой задачи С.Л. Сенюковым была написана программа. Центр выделенной сейсмической энергии (ц.в.с.э.) для выделенных суток определялся как землетрясение с координатами очага равными среднему значению координат по землетрясениям, локализованным за эти сутки. А энергия ц.в.с.э. вычислялась как сумма энергий этих землетрясений.

Рис.5 Изменение центра выделенной сейсмической энергии (ц.в.с.э.) во времени: график – изменение глубины, гистограмма - изменение энергии.

За весь период ц.в.с.э. менялся по глубине примерно от 30 км до -5 км от уровня моря, а выделенная энергия имела значения от 10^5 до 10^{11} Дж. Для того чтобы понять, как ведет себя ц.в.с.э. перед извержением вулкана, были исследованы временные интервалы, охватывающие периоды до, накануне и во время извержений в 2005 г и 2007 г. Детальное исследование более ранних извержений будет проведено позднее.

Рис.6 Изменение центра выделенной сейсмической энергии за период с 01 сентября 2004 г по 27 февраля 2005 г: график – изменение глубины, гистограмма – изменение энергии.

Первый временной отрезок – с 01 сентября 2004 г по 27 февраля 2005 г, рис.6. С 01.09.04 г по 11.01.05 г происходили практически только глубокие длиннопериодные землетрясения, поэтому ц.в.с.э. располагался на глубине 28-30 км. С 12 января стали регистрироваться в большом количестве поверхностные события и ц.в.с.э. резко поднимается в верхние горизонты. 15 января была отмечена первая термальная аномалия на спутниковом снимке, 17 января зафиксировано свечение над кратером, а 21 января выбросы раскаленных бомб.

Почти по такому же сценарию развивались события во втором временном интервале с 01 декабря 2006 г по 29 апреля 2007 г, рис.7. Сначала происходили события на глубине, затем подъем ц.в.с.э. в верхние слои, появляется термальная аномалия, свечение над кратером и пепловые выбросы.

Заключение

Исследование центра выделенной сейсмической энергии в разные периоды активности Ключевского вулкана, позволило установить, что перед вершинными извержениями в январе 2005 г и январе-феврале 2007 г наблюдался подъем ц.в.с.э. в верхние горизонты примерно за 7-10 дней до начала извержения. Такой подъем ц.в.с.э. может служить хорошим предвестником для прогноза вершинных извержений Ключевского вулкана.

Список литературы

1. Горельчик В.И., Гарбузова В.Т. Сейсмичность Ключевского вулкана как отражение его современной магматической деятельности (хроника событий 1987-1996 гг. и особенности связанной с ними сейсмичности) // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: «Наука - для Камчатки», 2001. С. 352-372.

2. Федотов С.А., Жаринов Н.А., Горельчик В.И. Деформации и землетрясения Ключевского вулкана, модель его деятельности // Вулканология и сесмология.1988. №2. С. 3-42.

3. Murru M., Montuori C. The locations of magma chambers at Mt. Etna, Italy, mapped by b-values // Geophysical research letters. V.26. 1999. №16. P. 2553-2556.

4. Wiemer Stefan, McNutt Stephen R. Variations in the frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska // Geophysical research letters. V. 24. 1997. №2. P. 189-192.

5. Weimer S. A software package to analyze seismicity: ZMAP // Seism.Res.Lett. 2001. V. 72. P. 373-382.