МОДЕЛЬ ОЧАГА ОНОРСКОГО ЗЕМЛЕТРЯСЕНИЯ 14 АВГУСТА 2016 Г. М = 5.8 (О. САХАЛИН)

Прытков А.С.¹, Сафонов Д.А.^{1, 2}, Полец А.Ю.¹

¹ Федеральное государственное бюджетное учреждение науки Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, a.prytkov@imgg.ru ² Сахалинский филиал Федерального государственного бюджетного учреждения науки Федерального

исследовательского центра «Единая геофизическая служба РАН», г. Южно-Сахалинск

Введение

14 августа 2016 г. в 11 ч 15 мин *UTC* вблизи западного побережья центральной части о. Сахалин на глубине ~ 9 км произошло землетрясение магнитудой Mw = 5.8 (локальная магнитуда $M_L = 6.1$) (Онорское землетрясение). Интенсивность сотрясений в эпицентральной зоне достигала 7 баллов по шкале *MSK*-64 [3]. Землетрясение и последующие афтершоки были зарегистрированы станциями локальной сети и обработаны автоматической системой сейсмического мониторинга [7, 9]. Эпицентр землетрясения (50.351 N; 142.395 E) расположен между двух крупных региональных разломных зон субмеридионального простирания – Западно- и Центрально-Сахалинской.

Тектоническая обстановка района исследований

Онорское землетрясение 2016 г. произошло вблизи западного побережья центральной части о. Сахалин в зоне скалывания между двух крупных региональных разломных зон субмеридионального простирания – Западно- и Центрально-Сахалинской (рис. 1). Кинематика Центрально-Сахалинского разлома характеризуется взбросо-надвиговой природой западного падения. Западно-Сахалинская складчатость относится к молодой антиклинатории, которая вытянута вдоль восточного побережья Татарского пролива. Она проявляется в виде сети тесно связанных между собой сбросов и взбросов.

Система субмеридиональных разломов Сахалина рассматривается в качестве границы между Евразийской (Амурской) и Североамериканской (Охотской) литосферными плитами. По данным GPS/ГЛОНАСС наблюдений скорость схождения плит в центральной части острова относительно Евразии достигает 8 мм/год [1]. Преобладающие деформации вследствие схождения плит реализуются в пределах островной суши в условиях диагонального СВ – ЮЗ сжатия со скоростью 4 – 5 мм/год. В условиях общего сжатия, более молодой и активный Западно-Сахалинский антиклинаторий надвигается на менее активные, но более жесткие и устойчивые древние видоизменено-реликтовые антиклинатории [4]. Надвиг происходит по достаточно широкой зоне многочисленных субпараллельных разрывов типа взбросов и надвигов. Онорское землетрясение 2016 г. пространственно тяготеет к одному из таких разрывов северо-западного простирания.

Карта эпицентров афтершоков с $M_L > 2.0$ (рис. 1) позволила оконтурить очаговую зону землетрясения шириной ~ 20 км, которая вытянута в северо-западном направлении в районе поднятия Западно-Сахалинских гор на 35 – 40 км. В отличие от слабых афтершоков, события с $M_L \ge 4.0$ локализованы в окрестности главного толчка на глубинах до 10 км.

Тензор сейсмического момента

Тензор сейсмического момента землетрясения определен методом инверсии волновых форм с использованием программного комплекса ISOLA-GUI [12, 5]. Определялся девиаторный тензор и моментная магнитуда. Глубина модельного центроида и среднее время в очаге уточнялись методом поиска по сетке, при этом координаты эпицентра фиксировались. В качестве исходных данных использовались записи региональных широкополосных сейсмических станций СФ ФИЦ ЕГС РАН.

Согласно полученному решению в очаге землетрясения реализовались субгоризонтальные напряжения сжатия CB – ЮЗ направления. Тип подвижки для обеих нодальных плоскостей – взброс с незначительной сдвиговой компонентой (рис. 1). Определенная величина сейсмического момента M_0 = 3.53×10^{17} HM соответствует моментной магнитуде Mw = 5.6 и несколько ниже оценок сейсмологических агентств (Mw = 4.8).

Рис. 1. Механизм очага Онорского землетрясения 14 августа 2016 г. и карта эпицентров афтершоков. Схема разломов приведена согласно В.В. Харахинову [8]: 1 – Западно-Сахалинский, 2 – Центрально-Сахалинский

В очагах афтершоков последующих суток, для семи из которых определен тензор сейсмического момента, прослеживается преемственность поля напряжений, соответствующего механизму очага главного события с небольшими, не превышающими 15°, вариациями наклона и простирания нодальных плоскостей (таблица). Глубины центроидов для сильнейших афтершоков находятся в пределах 4 – 10 км.

N₂	Дата	t _o	Оси главных				Нодальные плоскости						Тип сейсмо-	
Π/Π	д.мес.год	- 0			напря	іжений								дислокации
		чминс		Т		Р		NP1			NP2			
				PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
1	14.08.2016	11 15 13	5.6	76	28	12	240	144	57	82	339	34	103	взброс
2	15.08.2016	08 23 07	4.8	74	320	7	75	149	40	68	357	53	108	взброс
3	16.08.2016	04 57 08	4.0	79	288	9	70	152	37	79	346	54	98	взброс
4	16.08.2016	21 15 44	4.3	68	314	11	72	140	38	58	359	59	113	взброс
5	17.08.2016	14 03 17	4.7	85	171	1	64	158	44	97	329	47	84	взброс
6	17.08.2016	15 50 31	4.2	83	284	6	74	160	39	84	347	51	94	взброс
7	20.08.2016	02 07 13	3.9	77	358	4	248	147	50	75	351	42	108	взброс
8	27.08.2016	19 44 23	4.1	71	112	14	251	171	60	103	325	32	68	взброс

Таблица. Параметры механизмов очагов землетрясения 14.08.2016 г. и его афтершоков.

Моделирование очага землетрясения и косейсмические смещения земной поверхности

Моделирование очага Онорского землетрясения 2016 г. осуществлялось инверсией волновых форм по методу Kikuchi et al., 1991 [10]. Моделирование проводилось на основе широкополосных телесейсмических записей объемных волн 20 станций мировой сети GSN (The Global Seismographic Network) (рис. 3) в диапазоне эпицентральных расстояний (Δ) 20 – 100°. Использовались записи *P*-волн на вертикальных каналах *BHZ*, которые отфильтровывались в диапазоне от 0.002 до 1.0 Гц. Записи, существенно отличающиеся по амплитуде и форме колебаний от группы других, зарегистрированных на близкорасположенных станциях, исключались из рассмотрения. Координаты и глубина эпицентра, а также параметры нодальных плоскостей *NP1* и *NP2* (таблица) фиксировались.

Рис. 2. Наблюденные (черный цвет) и синтетические (серый цвет) сейсмограммы Онорского землетрясения 2016 г. Светлыми треугольниками показано азимутальное окружение станциями мировой сети *GSN*. Теоретические сейсмограммы построены для подвижки *NP1* (*STK* = 144⁰, *DP* = 57⁰). Слева от сигналов: первая строка – код станции; вторая – азимутальный угол φ в градусах, третья – эпицентральное расстояние Δ в градусах. Над сейсмограммами указана максимальная амплитуда в мкм (μ m). Вверху приведен график временной функции очага.

В качестве рабочей принята подвижка юго-западного падения $DP = 57^{0}$ нодальной плоскости *NP1* (*STK* = 144⁰), дающая наилучшее совпадение реальных и модельных сейсмограмм. Реконструкция смещений в плоскости разрыва производилась по сетке размером 10 × 7 узлов (по простиранию и по падению, соответственно) с шагом сетки 5 км. Моделирование показало, что смещения распространялись во все стороны от гипоцентра, длительность вспарывания составила T = 13 с. Временная функция в очаге имеет ярко выраженный пик на 6-ой секунде (рис. 2).

Результаты моделирования смещений в плоскости сейсморазрыва представлены на рис. 3. Стрелками показаны направления смещений, цвет отражает их величины. В интервале глубин 5 – 10 и 20 – 25 км выделяются области максимальных смещений, величины которых достигают 8 см. Значимые смещения в очаге землетрясения проявились на расстоянии 30 км по простиранию и 25 км по паданию. Величина модельного сейсмического момента составила $M_0 = 1 \times 10^{18}$ Hм, что соответствует моментной магнитуде Mw = 5.81.

Модельные параметры очага Онорского землетрясения использованы для расчета косейсмических смещений земной поверхности. Для расчета принята модель разлома, имеющая плоскость простирание 144° , угол падения 57° , которая состоит из 70 субразломов размером 5×5 км. Каждый субразлом имеет заданную величину и направление подвижки. Косейсмические смещения вычислены для однородного упругого полупространства, разделенного наклонной плоскостью, вдоль которой происходит деформирование его частей [11].

Косейсмические смещения земной поверхности показаны на рис. 4. Величины смещений не превысили 3 см. Максимальные вертикальные смещения в виде поднятия земной поверхности приурочены к очаговой области землетрясения, опускание наблюдается к северо-востоку от нее. В отличие от вертикальных, горизонтальные смещения, в основном, проявились к северу и северозападу от очага и приурочены к району опускания. В целом, такой характер распределения косеймических смещений является отражением взбросового типа подвижки в очаге.

Рис. 3. Реконструкция смещений в очаговой зоне Онорского землетрясения по результатам инверсии сейсмических волн. Стрелками показаны направления смещений, звездочкой – положение главного толчка.

Результаты

Онорское землетрясение 2016 г. Mw = 5.8 ($M_L = 6.1$) произошло между двух крупных региональных разломных зон меридионального простирания – Западно- и Центрально-Сахалинской. За две недели после главного толчка локальной сетью сейсмических станций было зарегистрировано более 130 афтершоков, всего за август-декабрь 2016 г. – около 170 [9]. Наибольшей силы афтершок $M_L = 5.0$ зарегистрирован на вторые сутки после главного толчка. Пространственное распределение афтершоковой области позволили оконтурить очаговую зону землетрясения, которая вытянута в северо-западном направлении и тяготеет к субпараллельному разлому, одной из вторичных структур Центрально-Сахалинского разлома. Эпицентр главного толчка приурочен к южному краю облака афтершоков, в окрестности которого локализованы почти все последующие события с $M_L \ge 4.0$.

Рис. 4. Косейсмические смещения земной поверхности эпицентральной зоны Онорского землетрясения. Цвет отражает вертикальные смещения, горизонтальные смещения показаны стрелками. Эпицентр землетрясения отмечен звездочкой. Остальные условные обозначения аналогичны рис. 1.

Согласно решению фокального механизма в очаге землетрясения реализовались субгоризонтальные напряжения сжатия СВ – ЮЗ направления, что согласуется с современным характером деформирования центральной части острова. Подвижка взбросового типа с незначительной сдвиговой компонентой соответствует обеим нодальным плоскостям. По результатам моделирования очага землетрясения в качестве рабочей плоскости принята подвижка юго-западного падения, произошедшая по нодальной плоскости юго-восточного простирания.

Распространение вспарывания в очаге землетрясения и косейсмические смещения земной поверхности свидетельствуют, что активным блоком разлома является восточное крыло, испытавшее подвиг под западное. Область смещений в плоскости разрыва совпадает с пространственной ориентацией афтершоков. Значимые смещения величиной более 2 см проявились по простиранию на расстоянии 30 км, по падению – 25 км. Из оценки эмпирических соотношений для длины $L = 10^{0.5 M - 1.9}$ и ширины $W = 10^{0.3 M - 0.8}$ [2, 6] линейный размер очага землетрясения M = 5.8 должен составлять 10 × 9 км, что гораздо меньше зоны модельных разрывных нарушений. С другой стороны, величина сейсмического момента $M_0 = \mu S D_{cp}$ [2] соответствует площади модельных разрывных нарушений при средней подвижке в очаге ~ 4 см.

Большая площадь разрывных нарушений является отражением процесса длительного вспарывания очаговой зоны, время которого составило 13 с. Согласно теории упругой отдачи, можно предположить, что при скорости накопления тектонических напряжений в окрестности Центрально-Сахалинского разлома ~ 1 мм/год [1] период повторяемости для сегмента очага Онорского землетрясения с величиной подвижки 8 см составит более 80 лет.

Заключение

По результатам моделирования методом инверсии объемных сейсмических волн установлены особенности развития сейсмической подвижки в очаговой зоне Онорского землетрясения 2016 г. *Мw* = 5.8. В очаге реализовались субгоризонтальные напряжения сжатия CB – ЮЗ направления. Тип подвижки – взброс юго-западного падения с незначительной сдвиговой компонентой, который произошел по нодальной плоскости юго-восточного простирания. В механизмах афтершоков последующих суток выявлена преемственность поля напряжений, соответствующего главному событию. Очаг землетрясения приурочен к секущему разлому, одной из вторичных структур Центрально-Сахалинского взброса-надвига. Восстановленные смещения в очаге землетрясения позволили рассчитать косейсмические деформации земной поверхности эпицентральной зоны и установить, что активным блоком разлома является восточное крыло, испытавшее подвиг под западное.

Список литературы

1. Василенко Н.Ф., Прытков А.С. Моделирование взаимодействия литосферных плит на о. Сахалин по данным GPS наблюдений // Тихоокеанская геология. 2012. Т. 31. № 1. С. 42–48.

2. Касахара К. Механика землетрясений. М.: Мир, 1985. 264 с.

3. *Медведев С.В., Шпонхойер В., Карник В.* Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с.

4. Мельников О.А. Структура и геодинамика Хоккайдо-Сахалинской складчатой области. М.: Наука, 1987. 95 с.

5. Сафонов Д.А., Нагорных Т.В., Коновалов А.В., Степнов А.А. Тензор момента, механизмы очага землетрясений и напряженное состояние территории о. Сахалин // Вулканология и сейсмология. 2017. № 3. С. 59–70.

6. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.

7. Степнов А.А., Коновалов А.В., Гаврилов А.В., Манайчев К.А. Автоматическая система на базе earthworm для расчёта параметров очага локальных землетрясений в режиме реального времени // Сейсмические приборы. 2016. Т. 52. № 4. С. 14–32.

8. Харахинов В.В. Нефтегазовая геология Сахалинского региона. М.: Научный мир, 2010. 276 с.

9. https://eqalert.ru

10. *Kikuchi M. Kanamori H.* Inversion of complex body waves-III // Bulletin of the Seismological Society of America. 1991. V. 81. P. 2335–2350.

11. *Okada Y*. Surface deformation due to shear and tensile faults in a half-space // Bulletin of the Seismological Society of America. 1985. V. 75. P. 1135–1154.

12. Sokos, E., Zahradník J. Evaluating Centroid Moment Tensor Uncertainty in the New Version of ISOLA Software // Seismological Research Letters. 2013. V. 84. P. 656–665.