АНАЛИЗ ПРОГНОСТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ПАРАМЕТРОВ ВЕРОЯТНОСТНОЙ МОДЕЛИ СЕЙСМИЧЕСКОГО РЕЖИМА

Богданов В.В., Павлов А.В.

Институт космофизических явлений и распространения радиоволн ДВО РАН, с. Паратунка, Камчатский край e-mail: pavlov@ikir.ru

Введение

В работах [1, 2, 3] был применён вероятностный подход к каталогу Камчатских землетрясений. Данный подход позволяет, рассматривая каждое землетрясений как элементарное событие, а весь каталог или его часть как пространство элементарных событий, задать множество подмножеств случайных событий. Путём статистической обработки каталога землетрясений можно определить распределения вероятностей для заданных случайных событий. Вариации в распределениях вероятностей случайных событий за разные временные периоды позволяют отслеживать изменения в сейсмическом режиме региона и, следовательно, дают возможность определять области и периоды повышенной сейсмической активности.

В данной работе для двенадцати сейсмоактивных областей Камчатского региона были вычислены вероятности P заданных случайных событий, определённых каталога землетрясений Камчатки. Рассматривая аномальные значения вероятностей Р в периоды сейсмической активизации и сейсмического затишья как прогностические признаки, предшествующие землетрясениям энергетическим сильным c $K_{\rm S} \ge 14.0$, произведена оценка их эффективности V, надёжности R, а также эффективности прогноза J по методикам А.А. Гусева и Г.М. Молчана.

Вероятностная модель сейсмического режима

При теоретико-вероятностном подходе каталог землетрясений можно представить в виде вероятностного пространства трех математических объектов, а именно: Ω — пространство элементарных событий, \tilde{F} — множество подмножеств случайных событий, P — вероятности этих событий [1, 2]. При этом каждое землетрясение рассматривается как единичный исход ω_i в пространстве Ω , мощность которого за рассматриваемый период задается числом событий каталога. В свою очередь, каждый исход ω_i определяется системой случайных непрерывных величин: широтой φ_i , долготой λ_i , глубиной h_i , энергетическим классом K_i =lgE и временем t_i . Время единичного события как случайныя величина из дальнейшего анализа в предлагаемой модели будет исключено. Так как случайные величины φ_i , λ_i , h_i и K_i заключены в соответствующие интервалы между минимальными и максимальными значениями, то для пространства элементарных событий справедливо

$$\Omega = \{\omega : \varphi_{min} \leq \varphi \leq \varphi_{max}; \lambda_{min} \leq \lambda \leq \lambda_{max}; h_{min} \leq h \leq h_{max}; K_{min} \leq K \leq K_{max} \}.$$

Максимальные и минимальные значения случайных величин задаются геометрией реального сейсмического региона, а также его внутренними свойствами, определяющими энергетику события. Чтобы перейти от идеализированного вероятностного пространства к реальному эксперименту, необходимо границы пространства элементарных событий Ω и сами вероятности P определять из каталога землетрясений на основе его статистической обработки.

Для непрерывных величин, определяющих сейсмическое событие, плотность распределения можно представить и как многомерную производную от $F(\varphi, \lambda, h, k)$, и как произведение условных и безусловных функций f следующим соотношением:

$$f(\varphi,\lambda,h,K)=f(\varphi)\cdot f(\lambda|\varphi)\cdot f(h|\varphi,\lambda)\cdot f(K/\varphi,\lambda,h),$$

где $f(\phi)$ —безусловная плотность распределения сейсмических событий в зависимости от широты ϕ ; $f(\lambda|\phi)$ — плотность распределения сейсмических событий по λ при условии, что их широта равна ϕ ; $f(h|\phi,\lambda)$ — плотность распределения сейсмических событий по h при условии, что их широта и долгота соответственно равны ϕ и λ ; $f(K|\phi,\lambda,h)$ — плотность распределения сейсмических событий по K при условии, что их долгота, широта и глубина соответственно равны λ , ϕ и h. Зная аналитический вид плотности распределения, можно вычислить вероятность того, что сейсмическое событие попадет в

заданные интервалы: по широте $\Delta \varphi_i = \varphi_i - \varphi_{i-1}$, долготе $\Delta \lambda_j = \lambda_j - \lambda_{j-1}$, глубине $\Delta h_m = h_m - h_{m-1}$ и по энергетическому классу $\Delta K = K_n - K_{n-1}$:

энергетическому классу
$$\Delta \mathbf{K} = \mathbf{K}_n - \mathbf{K}_{n-1}$$
:
$$P(\Delta \varphi_i, \Delta \lambda_j, \Delta h_m, \Delta K_n) = \int_{\varphi_1}^{\varphi_2} d\varphi \int_{\lambda_1}^{\lambda_2} d\lambda \int_{h_1}^{h_2} dh \int_{k_1}^{k_2} f(k, \varphi, \lambda, h) dK = F(\varphi_i, \lambda_j, h_m, K_n) - F(\varphi_{i-1}, \lambda_{j-1}, h_{m-1}, K_{n-1}) = \int_{\varphi_1}^{\varphi_2} d\varphi \int_{\lambda_1}^{\lambda_2} d\lambda \int_{h_1}^{h_2} dh \int_{k_1}^{k_2} f(k, \varphi, \lambda, h) dK = F(\varphi_i, \lambda_j, h_m, K_n) - F(\varphi_{i-1}, \lambda_{j-1}, h_{m-1}, K_{n-1}) = \int_{\varphi_1}^{\varphi_2} d\varphi \int_{\lambda_1}^{\lambda_2} d\lambda \int_{h_1}^{h_2} dh \int_{k_1}^{k_2} f(k, \varphi, \lambda, h) dK = F(\varphi_i, \lambda_j, h_m, K_n) - F(\varphi_{i-1}, \lambda_{j-1}, h_{m-1}, K_{n-1}) = \int_{\varphi_1}^{\varphi_2} d\varphi \int_{\lambda_1}^{\lambda_2} d\lambda \int_{h_1}^{h_2} dh \int_{h_1}^{h_2} f(k, \varphi, \lambda, h) dK = F(\varphi_i, \lambda_j, h_m, K_n) - F(\varphi_{i-1}, \lambda_{j-1}, h_{m-1}, K_{n-1}) = \int_{\varphi_1}^{\varphi_2} d\varphi \int_{\lambda_1}^{\lambda_2} d\lambda \int_{h_1}^{h_2} dh \int_{h_1}^{h_2} f(k, \varphi, \lambda, h) dK = F(\varphi_i, \lambda_j, h_m, K_n) - F(\varphi_i, \lambda$$

$$P(\Delta \varphi_i) \times P(\Delta \lambda_i | \Delta \varphi_i) \times P(\Delta h_m | \Delta \lambda_i, \Delta \varphi_i) \times P(\Delta K_n | \Delta h_m, \Delta \lambda_i, \Delta \varphi_i)$$

где i, j, m и n — индексы, соответствующих интервалов случайных величин. Статистическая обработка каталога по данной формуле дает возможность не только вычислить вероятности возникновения сейсмического события в том или ином заданном интервале географических координат, глубины и энергетического класса, но и получить численные значения ступенчатой функции распределения $F(\Delta \varphi, \Delta \lambda, \Delta h, \Delta K)$. Экспериментально установлено, что с ростом числа событий n и уменьшением интервала относительная частота стремится к своему математическому аналогу P, а $F(\Delta \varphi, \Delta \lambda, \Delta h, \Delta K)$ — к устойчивому непрерывному распределению $F(\varphi, \lambda, h, K)$. Таким образом, функция F определяет потенциальные возможности сейсмического режима произвольной области в терминах вероятности. При таком подходе каталог землетрясений, представленный в виде математического объекта трех элементов, является опорной моделью, на фоне которой можно отслеживать изменения в сейсмической активности, т.е. регистрировать вариации в распределении вероятностей в локальных областях сейсмического региона за различные интервалы времени.

На основе каталога землетрясений Камчатского региона, составленного КФ ФИЦ ЕГС РАН [6], были определены следующие случайные события:

<u>Событие A</u>: Какова вероятность попадания сейсмических событий, произошедших в некотором сейсмоактивном объёме V, в заданные области S;

<u>Событие</u> B: Какова вероятность попадания сейсмических событий, произошедших в некотором сейсмоактивном объёме V, в интервалы энергетического класса ΔK_i .

В данной работе вероятности случайных событий A и B вычислялись для каждой из двенадцати областей S_i с размерами 150×150 км, расположенных вдоль восточного побережья

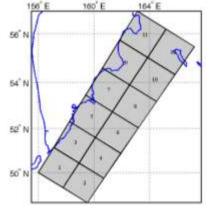


Рис. 1. Исследуемые области S_i

Камчатки (рис.1). Исследуемые области находятся в Южном и Северном сегменте Камчатской сейсмофокальной зоны, а также частично в Командорском сегменте Алеутской дуги и зоне Тихого океана. В рассматриваемых областях за период 1962–2016 гг. на глубинах до 100 км произошло 33 сейсмических события с энергетическим классом K_s >14.0.

Вычисления вероятностей P(A) и P(B) проводились для землетрясений с энергетическим классом $9.0 \le K_S < 14.0$ и глубиной гипоцентров $h \le 100$ км. При вычислении вероятностей случайного события B рассматривались интервалы энергетического класса $9 \le \Delta K_1 < 10$, $10 \le \Delta K_2 < 11$, и $12 \le \Delta K_3 < 14$. Временное окно, в котором вычислялись вероятности P(A) и P(B), было выбранно равным соответственно $\Delta T_1 = 3$ года и $\Delta T_2 = 5$ лет. Шаг, с которым смещалось временное окно вдоль исследуемого интервала

 $T_{\text{инст}}$ =1962—2016 гг., был выбран равным Δt =1 месяц. В качестве примера на рис.2 и рис.3 представлены соответственно временные ряды значений вероятности $P(\boldsymbol{A})$ и $P(\boldsymbol{B})$ при $10 \le \Delta K_2 < 11$, вычисленные для области S_1 .

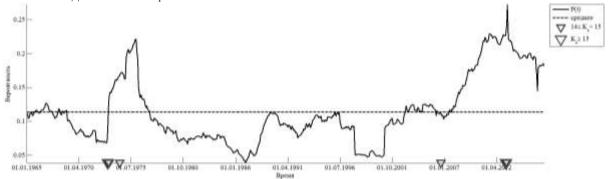


Рис. 2. Временной ряд значений вероятности $P(\mathbf{A})$ для области S_1 . Сейсмические события с энергетическим классом $K_s \ge 14.0$, произошедшие в данной области, отмечены треугольниками.

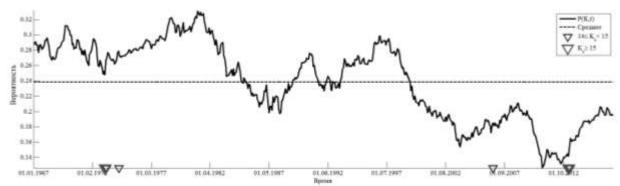


Рис. 3. Временной ряд значений вероятности $P(\mathbf{B})$ при $10 \le \Delta K_2 < 11$ для области S_1 .

Оценка эффективности прогностических признаков

В данной работе эффективность прогностических признаков P(A) и P(B) вычислялась как для периодов сейсмической активизации, так и для периодов сейсмического затишья, которые могли бы предшествовать сильным землетрясениям с энергетическим классом $K_s \ge 14.0$. Периодами сейсмической активизации, при анализе значений временных рядов вероятностей P, считались интервалы времени, в течение которых значения вероятностей превышали уровень тревоги $P_{\text{тр.1}} = M(P) + \sigma(P)$. Периодами сейсмического затишья считались интервалы времени, в которых значения временных рядов вероятностей были ниже уровня тревоги $P_{\text{тр.2}} = M(P) - \sigma(P)$. При этом величины M(P) и $\sigma(P)$ являются математическим ожиданием и среднеквадратическим отклонением вероятностей рассматриваемых случайных событий. Периоды ожидания $T_{\text{ож}}$ сильного землетрясения с $K_s \ge 14.0$ для параметров P(A) и P(B) были приняты равными соответственно 4 года и 5 лет. Начало периода тревоги выбиралось таким образом, чтобы оно совпадало с моментом превышения исследуемым прогностическим признаком уровня тревог $P_{\text{тр.1}}$ в случае сейсмической активизации, или в случае сейсмического затишья совпадало с моментом, когда значения прогностического признака становились ниже уровня тревоги $P_{\text{тр.2}}$.

Для оценки эффективности рассматриваемых предвестников были использованы для подхода А.А. Гусева [4] и Г.М. Молчана [5].

Эффективность прогноза по методике А.А.Гусева вычисляется для конкретной пространственной области и определённого энергетического диапазона землетрясений по формуле:

$${J_G} = rac{{N_ + }/{T_ { ext{ t TPEBOLU}}}}{{N/T}}$$

где T — общее время мониторинга сейсмической обстановки; N_+ — количество землетрясений, соответствующих успешному прогнозу за время T; N — общее количество произошедших землетрясений (имеющих пространственно-временные характеристики, аналогичные прогнозируемым), произошедших за время T; $T_{\text{тревоги}}$ — общее время тревоги (суммарная длительность всех промежутков времени, в которых действовал прогноз по оцениваемому методу в течение общего времени мониторинга). Статистическая значимость α определяется вероятностью получения значений эффективности J_G в отсутствие связи "землетрясений-предвестник". В отсутствие такой связи, т.е. при случайном угадывании, эффективность J_G равна 1.

Эффективность предвестника J_{M} по методике Г.М. Молчана определяется как $J_{M}=1-\nu-\tau$,

где
$$au=\frac{T_{\rm тревоги}}{T}$$
 — мера тревоги; $\nu=1-\frac{N_+}{N}$ — доля пропусков цели. Для случайного прогноза $J_M=0$, а для идеального (без пропуска цели и с нулевым временем тревоги) — $J_M=1$.

Надежность предвестника R определялась как отношения количества землетрясений $n(E_A)$, для которых был выделен предвестник, к числу всех землетрясений n(E):

$$R = n(E_A)/n(E)$$
.

Достоверность предвестника определялась как отношение числа предвестниковых аномалий $n(A_E)$ к общему числу выделенных аномалий n(A):

$$V = n(A_E)/n(A)$$
.

В таблице 1 представлены результаты оценки прогностической эффективности параметра $P(\mathbf{A})$ как для периодов сейсмической активизации, так и для периодов сейсмического затишья.

Таблица 1. Оценка прогностической эффективности параметра P(A) при аномалиях сейсмической активизации и сейсмического затишья.

P(A)	Активизация	Затишье
$N_{\scriptscriptstyle +}$	12	7
N	33	33
V	0.29	0.14
R	0.36	0.21
$oldsymbol{J_G}$	2	0.98
α	0.01	0.99
v	0.64	0.79
τ	0.18	0.21
J_{M}	0.18	0

Как видно из таблицы 1, в периоды сейсмической активизации с помощью параметра P(A) было спрогнозировано $N_+=12$ сейсмических событий с $K_S{\geq}14.0$, а его надёжность R и достоверность V составили соответственно 0.36 и 0.29. Эффективность прогноза составила $J_G{=}2$, при этом статистическая значимость α , показывающая вероятность случайного получения таких значений в отсутствие связи землетрясений с рассматриваемым предвестником, равна 0.01. В периоды сейсмического затишья с помощью параметра P(A) было спрогнозировано $N_+=7$ землетрясений с $K_S{\geq}14.0$, а его надёжность R и достоверность V составили соответственно 0.21 и 0.14. Эффективность J_G составила 0.98 при $\alpha{=}0.99$, а эффективность J_M равна 0, что говорит об отсутствии связи "землетрясение-предвестник".

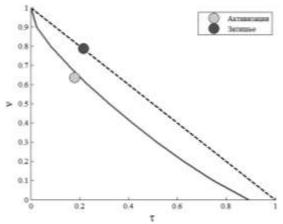


Рис.4. Диаграмма Молчана для прогностического параметра P(A). Прерывистая линия соответствует случайному прогнозу. Сплошная линия — нижняя граница доверительного интервала случайного прогноза с уровнем значимости α =0.05.

На рис.4 представлена диаграмма Молчана для прогностического параметра P(A). На данной диаграмме абсцисса точки определяется как мера тревоги τ , а ордината – как доля пропусков цели ν . Диагональ диаграммы Молчана $\tau + \nu = 1$. соединяющая точки (0;1) (точка "оптимиста") и (1;0) "пессимиста") соответствует случайному прогнозу. Для этой диагонали можно построить доверительный интервал с заданной значимостью а. В данном случае представляет интерес только нижняя ветвь этого доверительного интервала. Как следует из рис.4, значения (τ, ν) , полученные для параметра P(A)при аномалиях сейсмического затишья, лежат выше нижней границы 95% доверительного интервала, что говорит об отсутствии связи между рассматриваемым предвестником и землетрясениями с энергетическим классом $K_S \ge 14.0$. Значения (τ, ν) , полученные для параметра P(A) в периоды сейсмической активизации, лежат ниже полученной границы доверительного

интервала, что можно интерпретировать как высокую степень надёжности выявленной связи рассматриваемого предвестника с землетрясениям с энергетическим классом $K_s \ge 14.0$.

В таблице 2 представлены результаты оценки прогностической эффективности параметра $P(\mathbf{B})$ как для периодов сейсмической активизации, так и для периодов сейсмического затишья. Таблица 2. Оценка прогностической эффективности параметра $P(\mathbf{B})$ при аномалиях сейсмической активизации и сейсмического затишья.

P(B)	Активизация		Затишье			
	9≤∆ <i>K</i> ₁ <10	10≤Δ <i>K</i> ₂ <11	12≤∆ <i>K</i> ₃ <14	9≤∆ <i>K</i> ₁ <10	10≤Δ <i>K</i> ₂ <11	12≤∆ <i>K</i> ₃ <14
$N_{\scriptscriptstyle +}$	15	10	8	9	16	13
V	0.24	0.15	0.12	0.16	0.24	0.22
R	0.15	0.3	0.24	0.27	0.48	0.39
J_G	1.46	0.9	1.45	0.8	1.85	1.88
α	0.09	0.85	0.24	0.47	0.008	0.016
v	0.55	0.7	0.76	0.73	0.52	0.6
τ	0.31	0.33	0.17	0.34	0.26	0.21
J_{M}	0.14	-0.03	0.07	-0.07	0.22	0.19

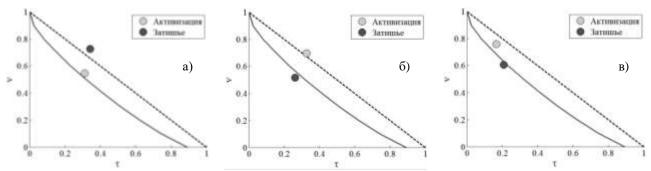


Рис. 5. Диаграмма Молчана для прогностического параметра $P(\mathbf{B})$ при $9 \le \Delta K_1 < 10$ (a), $10 \le \Delta K_2 < 11$ (б), и $12 \le \Delta K_3 < 14$ (в).

Как видно из таблицы 2, при аномалиях сейсмической активизации наибольшую эффективность J_G , , которая составляет 1.46 при уровне значимости α =0.09, параметр $P(\boldsymbol{B})$ имеет для $9 \le \Delta K_1 < 10$. Эффективность J_M в этом случае равна 0.14, что также является наибольшем значением для всех рассматриваемых интервалов ΔK . На диаграмме Молчана (рис.5а) экспериментальная точка (τ, v) для $P(\boldsymbol{B})$ при $9 \le \Delta K_1 < 10$ находится выше нижней границе 95% доверительного интервала, что говорит о низкой связи рассматриваемого предвестника с землетрясениями с $K_S \ge 14.0$.

При аномалиях сейсмического затишья наилучшую эффективность J_G , которая составляет 1.85 при α =0.008 и 1.88 при α =0.016, параметр $P(\textbf{\textit{B}})$ имеет соответственно для $10 \le \Delta K_2 < 11$ и $12 \le \Delta K_3 < 14$. Эффективность J_M для этих интервалов ΔK равна соответственно 0.22 и 0.19. На диаграммах Молчана (рис.56,в) экспериментальная точка (τ, v) в обоих случаях лежит ниже границы 95% доверительного интервала, что можно интерпретировать как достаточно высокую степень достоверности выявленной связи аномалий с происходящими землетрясениями с $K_5 \ge 14.0$.

Заключение

Применение вероятностных методов к каталогу Камчатских землетрясений позволило задать подмножество случайных событий A и B. В ходе статистической обработки каталога, для двенадцати сейсмоактивных областей Камчатского региона, во временном окне ΔT_1 =3 года и ΔT_2 =5 лет с шагом Δt =1 месяц на интервале 1962 - 2016 гг. были вычислены распределения вероятностей P этих случайных событий. Рассматривая параметры P(A) и P(B) как прогностические признаки, была произведена оценка их эффективности по методикам A.A. Гусева и $\Gamma.M.$ Молчана как для аномалий сейсмической активизации, так и для аномалий сейсмического затишья. Согласно полученным результатам, наилучшую эффективность, которая составляет J_G =2 и J_M =0.18, прогностический признак P(A) имеет при аномалиях сейсмической активизации. Параметр P(B) показал наилучшую прогностическую эффективность при аномалиях сейсмического затишья. В этом случае эффективности J_G и J_M для интервала энергетического класса $10 \le \Delta K_2 < 11$ составили соответственно 1.85 и 0.22, а для интервала $12 \le \Delta K_3 < 14$ приняли значения соответственно 1.88 и 0.19.

Список литературы

- 1. *Богданов В.В.* Вероятностная интерпретация закона повторяемости землетрясений на примере Камчатского региона // ДАН, 2006, том 3, с.393–397.
- 2. *Богданов В.В.*, *Павлов А.В.*, *Полюхова А.Л*. Вероятностная модель сейсмичности на примере каталога Камчатских землетрясений // Вулканология и сейсмология, 2010, № 6, с.52–64.
- 3. *Богданов В.В., Павлов А.В., Полюхова А.Л.* Рекуррентные соотношения расчёта параметров сейсмического режима на основе вероятностной интерпретации закона повторяемости //Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2012. № 1. С. 44–48.
- 4. *Гусев А.А.* Прогноз землетрясений по статистике сейсмичности. // Сейсмичность и сейсмические прогноз, свойства верхней мантии и их связь с вулканизмом Камчатки. Новосибирск: Наука, 1974. С. 109–119.
- 5. *Molchan G.M.* Strategies in strong earthquake prediction // Phys. Earth and Planet. Inter. 1990. V. 61. P. 84–98.
 - 6. http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php