ПОЛУЧЕНИЕ УСТОЙЧИВЫХ РЕГИОНАЛЬНЫХ ОЦЕНОК МОМЕНТНЫХ МАГНИТУД ДЛЯ КАМЧАТСКИХ СУБДУКЦИОННЫХ ЗЕМЛЕТРЯСЕНИЙ И УСТАНОВЛЕНИЕ СВЯЗИ МЕЖДУ *M*_w И *M*_L

И.Р. Абубакиров¹, А.А. Гусев^{2, 1, 3}, Е.М. Гусева¹, В.М. Павлов¹, А.А. Скоркина^{1, 3} ¹Камчатский филиал ФИЦ ЕГС РАН, Петропавловск-Камчатский, anna@emsd.ru ²Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский ³Институт физики Земли им. О.Ю. Шмидта РАН, Москва

Введение

Для широкого спектра практических задач сейсмологии необходим каталог землетрясений с оценками магнитуд; при этом предпочтительной является шкала моментных магнитуд M_w [12], единственная из магнитуд, связанная с физическим параметром – сейсмическим моментом, M_0 , измеряемым в физических единицах (H·м):

 $M_{\rm w} = 2/3 \; (\lg M_0 \; [{\rm H} \cdot {\rm M}] - 9.1). \; (1)$

В настоящее время в качестве опорной магнитудной шкалы для Каталога землетрясений Камчатки и Командорских островов используется региональная магнитуда M_L , которая пересчитывается из энергетического класса $K_{51,2}^{\phi_{68}}$ [8] по формуле: $M_L = K_{51,2}^{\phi_{68}} / 2 - 0.75$ [1].

Оценки $M_{\rm L}$ для камчатских землетрясений было принято считать сопоставимыми с $M_{\rm w}$. Однако полезно охарактеризовать связь $M_{\rm L}$ и $M_{\rm w}$ более детально для широкого диапазона магнитуд. В этой связи возникают следующие задачи: сопоставить различные методики определения M_0 и $M_{\rm w}$ в регионе для умеренных магнитуд, и убедиться в согласованности получаемых оценок; и затем надежно определить среднюю связь $M_{\rm w}$ со стандартной региональной локальной магнитудой $M_{\rm L}$ (или с $K_{\rm S1.2}^{\phi 68}$). Эти задачи решали для условий Камчатки.

Исходный набор данных

Исследование стало возможным, во-первых, благодаря накопившемуся объему цифровых записей, после развития в 2005–2010 гг. на Камчатке современной сети сейсмических станций (D0) [9]. Исходные данные по $M_{\rm L}$ имеются в региональном каталоге. В качестве стандартных оценок $M_{\rm w}$ для Камчатки обычно рассматриваются оценки $M_{\rm w}^{\rm GCMT}$ [10], с нижним порогом $M_{\rm w} = 5$. Для расширения набора данных по $M_{\rm w}$, в дополнение к $M_{\rm w}^{\rm GCMT}$ за период 2010–2014 для наборов землетрясений (φ : 48°–58° с. ш., λ : 153°–173° в. д.) оценили M_0 по сейсмическим записям цифровых приборов камчатской сети (рис. 1).

Способы определения М₀ по волновым формам

Для определения сейсмического момента M_0 по сейсмическим данным существует два основных подхода. Первый способ («1») заключается в оценивании компонент тензора сейсмического момента путем решения обратной задачи, для чего необходимо провести инверсию широкополосных велосиграм с использованием синтетических сейсмограмм. Второй способ определения сейсмического момента M_0 («2») – через спектральную амплитуду на нулевой частоте (Ω_0) очагового спектра смещений, восстановленного по акселерограммам объемных волн, в частности, поперечных волн.

Оценки подхода «1», через определение тензора сейсмического момента центроида (эквивалентного точечного источника), которые предоставляются в рамках проекта GCMT («The Global CMT Project») обозначим оценки методики «1А». Оценки методики «1Б» – это реализация подхода «1», адаптированная к региональным данным (волновым формам станций камчатской сети), которая описана в работе [5]. Нижний порог определения M_w по этой методике близок к $M_w = 3.5-4.0$. Обозначим такие оценки как M_w^{RSMT} . Из 171 полученного решения RSMT в 118 случаях оценки M_w^{GCMT} отсутствуют.

Вторым подходом («2») сейсмические моменты оценивали по стандартной методике через спектральную амплитуду на нулевой частоте очагового спектра смещений по формуле [11]:

$$M_{0}(S) = \frac{\Omega_{0}(S)}{R_{\theta\phi}(S)} 4\pi \rho r_{0} c_{S}^{3}, (2)$$

где $M_0(S)$ – сейсмический момент, определенный по спектру S-волны, $\Omega_0(S)$ – низкочастотный уровень спектра S-волны (или спектральная амплитуда на нулевой частоте очагового спектра

смещений), $R_{\theta\varphi}(S)$ – диаграмма направленности для *S*-волны, ρ – плотность (=3.3 г/см³), r_0 – учет геометрического расхождения (для фиксированного расстояния в 1 км, пояснение см. ниже), а c_s – скорость поперечных волн (=4.7 км/с). Значения скорости *S*-волн и плотности выбрали, следуя [7].

Рис. 1. Карты с эпицентрами землетрясений, для которых получены оценки M_w методикой «1Б» – $M_w^{\text{RSMT}}(a)$, методикой «2А» – $M_w^{SF}(\delta)$, методикой «2В» – $M_w^{CB}(\epsilon)$ и методикой «2Б» – $M_w^{SB}(\epsilon)$. Отмечено положение использованных в работе сейсмических станций.

При этом подход «2» был реализован в трех модификациях («2А», «2Б» и «2В»), каждый выполнялся с использованием комплекса программ в Matlab. Оценки методики «2А» были получены в диалоговом режиме. Группа S-волн на записи землетрясения выделялась в пределах сегмента шириной 10–30% от времени пробега S-волны, затем подвергалась ДПФ. Спектр сглаживали с постоянным шагом по логарифму частоты, в пределах полосы шириной 2/3 октавы. Процедура приведения сглаженного наблюденного спектра к очаговому спектру для гипоцентрального расстояния r_0 , с учетом оценок потерь из [3], описана в работе [7]. Далее визуально определялся уровень низкочастотной ветви очагового спектра смещений $\Omega_0(S)$. Сейсмический момент и моментную магнитуду рассчитывали соответственно по формулам (2) и (1). Обозначим такие оценки

 $M_{\rm w}^{SF}$, где «SF» соответствует способу определения M_0 по очаговым спектрам смещений S-волн, причем спектр рассчитан ДПФ (Fourier).

В методике «2В» оценки сглаженных спектров получали путем полосовой фильтрации широкополосной записи коды S-волны, в наборе 12 полос шириной 2/3 октавы, перекрывающих диапазон 0.2–35 Гц. Для этого сначала находили оценки среднеквадратического уровня коды, на запаздывании 100 сек относительно времени в очаге, а затем по уровню коды оценивали очаговый спектр, пользуясь доработанным вариантом методики Т.Г. Раутиан [6]. Далее автоматически выделяли, при возможности, низкочастотную площадку в найденном очаговом спектре и ее уровень. Уровень площадки дает значение M_0 (2), которое пересчитывали в оценку M_w (1). Обозначим такие оценки M_w^{CB} , где «C» соответствует коде S-волны (Coda of S-waves), а «В» соответствует способу оценки спектра – полосовой фильтрации (Band).

В методике «2Б» оценки сглаженных спектров получали подобно (2В), полосовой фильтрацией, при этом в качестве исходного сигнала использовали фрагмент записи с *S*-волной. Обозначим такие оценки M_w^{SB} , где «*SB*» соответствует способу определения M_0 по уровню очагового спектра смещений *S*-волн, причем спектр рассчитан полосовой фильтрацией (*B*and).

Расчетная схема, примененная для приведения наблюденных спектров к очаговым спектрам для гипоцентрального расстояния r_0 , с учетом оценок потерь из [3], подробно описана в работе [2].

гаолица 1. Сопоставлен	ние наооров данных и методов определения <i>M</i> _w				
	Способ определения $M_{ m w}$				
	$M_{ m w}^{ m ~GCMT}$	$M_{ m w}^{ m RSMT}$	${M_{ m w}}^{CB}$	${M_{ m w}}^{SB}$	$M_{ m w}^{\ SF}$
Диапазон полученных $M_{ m w}$	4.8 - 6.8	3.5 - 6.6	3.0 - 6.3	3.0 - 6.2	2.5 - 6.0
N станций	8 - 159	3 – 5	3 – 8	3 - 8	3 - 20
N HOMMONIU IV M	142 17	171	636	689	890
и полученных и _w	142	1/1	из 1099	из 1099	из 1099
N пересечений		52 /	65 / 122	<u>87 / 115</u>	72/77
$c M_{\rm w}^{\rm \ GCMT} / M_{\rm w}^{\rm \ RSMT}$		337—	03/123	827113	23721
$\mu (M_{\mathrm{w}}^{*} - M_{\mathrm{w}}^{\mathrm{GCMT}}) /$		-0.09 /	-0.06 /	-0.11 /	-0.21 /
$\mu (M_{\rm w}^{*} - M_{\rm w}^{\rm RSMT})^{-1}$		_	0.03	0.05	-0.04
$\sigma(M_{\rm w}^{*}-M_{\rm w}^{\rm GCMT})/$		0.08 /	0.21 /	0.22 /	0.17 /
$\sigma(M_{\rm w}^*-M_{\rm w}^{\rm RSMT})^2$		_	0.26	0.25	0.14
Нижний порог полноты каталога	5.0			3.5	. 4.0
с полученными оценками $M_{ m w}$	~ 3.0	~ 4.0	~ 3.3	~ 3.3	~ 4.0

Таблица 1. Сопоставление наборов данных и методов определения *M*_w

¹Средняя разность оценок двух методов. Обобщенный индекс (^{*}) следует понимать в соответствующем столбце как ^{RSMT} / ^{CS} / ^{SB} / ^{SF}.

²Стандартное отклонение разностей индивидуальных оценок двух методов.

Результаты

Сопоставление региональных оценок M_w между собой. Суммарные численные характеристики перечисленных методов и данных приведены в Таблице 1, а сопоставление индивидуальных оценок представлено на рис. 2. Показано, что низкочастотные оценки RSMT и GCMT согласуются очень хорошо, что, скорее всего, говорит об их вполне приемлемой точности. Для контроля оценок M_w^{CS} , M_w^{SB} и M_w^{SF} использовали сопоставление с полученными ранее M_w^{GCMT} и M_w^{RSMT} . Для оценок по спектрам S-волн и коды согласие с низкочастотными оценками несколько хуже, чем между такими оценками, но все же его можно считать удовлетворительным. Важный результат – снижение нижнего порога M_w , которого удается достигнуть каждым из региональных методов.

Связь между региональной магнитудой M_L и M_w . Далее изучали связь M_L-M_w . Хотя можно было ожидать и отклонения данной связи от линейности для широкого диапазона магнитуд, а, в случае линейности, отклонения углового коэффициента полученной прямой от 1.0. Однако, после применения ортогональной регрессии к полученным оценкам (рис. 2), оказалось, что предположения линейной связи M_L и M_w , и постоянной разности этих величин (Таблица 2), выполняются в изученном диапазоне $M_w = 3.0-6.0$ ($M_L = 3.4-6.4$) в первом приближении.

Рекомендованные связи для получения оценок « M_w -proxy» для землетрясений диапазона магнитуд $M_L = 3.4-6.4$:

 $M_{\rm w} = M_{\rm L} - 0.40$ или $M_{\rm w} = 0.5(K_{\rm S12}^{\Phi 68}) - 1.15.$

Рис. 2. Зависимость $M_{\rm L}$ от $M_{\rm w}$, где $M_{\rm w}$ выбрана следующим образом: для $M_{\rm L} > 5$ – это $M_{\rm w}^{RSMT}(1)$, для $M_{\rm L} \le 5$ – это $M_{\rm w}^{CB}(2)$. Линия (3) проведена в предположении $M_{\rm w} = M_{\rm L}$. В предположении линейной связи с наклоном b = 1 приводится средняя связь (4, уравнение (*a*)), и диапазон $\pm \sigma$ для нее (5). Также приводится аппроксимация данных линейной ортогональной регрессией без фиксации наклона (6, уравнение (*б*)).

		51,2 /	
Способ определения $M_{ m w}$	<i>N</i> пар	$\mu (M_w - M_L)$	$\sigma(M_{ m w}-M_{ m L})$
$M_{ m w}^{ m \ GCMT}$	142	-0.34	0.23
$M_{ m w}^{ m ~RSMT}$	171	-0.40	0.26
$M_{ m w}{}^{CS}$	680	-0.39	0.23
${M_{ m w}}^{SB}$	692	-0.42	0.24
${M_{ m w}}^{SF}$	117	-0.48	0.16
Рекомендуемая поправка:		-0.40	

Таблица 2. Связь оценок M_w , полученных разными способами, с $M_L(K_{SL2}^{\phi_{68}})$

Список литературы

1. Гордеев Е.И., Гусев А.А., Левина В.И., Леонов В.Л., Чебров В.Н. Мелкофокусные землетрясения п-ова Камчатка // Вулканология и сейсмология. 2006. № 3. С. 28–38.

2. Гусев А.А., Скоркина А.А., Чебров Д.В. Очаговые спектральные параметры землетрясений Восточной Камчатки диапазона $M_w = 3-6$ по данным поперечных волн // Вестник КРАУНЦ. Науки о Земле. 2017. № 3. Вып. 35. С. 36–49.

3. Гусев А.А., Гусева Е.М. Оценка затухания поперечных волн в среде вблизи ст. «Петропавловск», Камчатка, по спаду спектра // Физика Земли. 2016. №4. С. 35–51.

4. Гусева Е.М., Гусев А.А., Оскорбин Л.С. Пакет программ для цифровой обработки сейсмических записей и его опробование на примере некоторых записей сильных движений // Вулканология и сейсмология. 1989. № 5. С. 35–49.

5. Павлов В.М., Абубакиров И.Р. Расчет тензора сейсмического момента слабых камчатских землетрясений: первые результаты // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Труды Шестой научно-технической конференции.

6. Раутиан Т.Г., Халтурин В.И., Закиров М.С., Земцова А.Г., Проскурин А.П., Пустовитенко Б.Г., Пустовитенко А.Н., Синельникова Л.Г., Филина А.Г., Шенгелия И.С. Экспериментальные исследования сейсмической коды. М.: Наука. 1981. 142 с.

7. Скоркина А.А., Гусев А.А. Определение набора характерных частот очаговых спектров для субдукционных землетрясений Авачинского залива (Камчатка) // Геология и геофизика. 2017. Т. 58. № 7. С. 1057–1068.

8. Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд // Наука, 1972. 117 с.

9. Чебров В.Н., Дрознин Д.В., Кугаенко Ю.А., Левина В.И., Сенюков С.Л., Сергеев В.А., Шевченко Ю.В., Ящук В.В. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология. 2013. №1. С. 18–40.

10. Global Centroid Moment Tensor Project. URL: http://www.globalcmt.org/ CMTsearch.html (дата обращения: 27.10.2016).

11. Hanks T., Wyss M. The use of body-wave spectra in the determination of seismic-source parameters // Bulletin of the Seismological Society of America. 1972. V. 62. \mathbb{N} 2. P. 561–589.

12. Kanamori H. The energy release in great earthquakes // Journal of Geophysical Research. 1977. V. 82. №20. P. 2981–2987.