СЕЙСМИЧЕСКАЯ АППАРАТУРА CEMEЙCTBA GMS (GEOSIG) В СЕТИ СИЛЬНЫХ ДВИЖЕНИЙ КФ ГС РАН.

Шевченко Ю.В. 1 , Дрознин Д.В. 1 , Яковенко В. 1 , Чебров В.Н. 1 , Разинков О.Г., 2

- 1. Камчатский филиал Геофизической службы РАН, г.Петропавловск-Камчатский, chebr@emsd.ru
- 2. ООО НПК «Вулкан», г. Москва.

Строительство в сейсмоопасных районах проводится на основе прогноза ожидаемой интенсивности движений грунта. Оценка интенсивности в баллах по шкале MSK-64 или максимального возможного ускорения грунта требует оснащения соответствующих пунктов акселерометрами и регистраторами, позволяющими получать цифровые записи ускорений в широком частотном и динамическом диапазоне до значений ускорения 1g ÷ 2g. К сожалению, на Камчатке сеть станций оснащенных необходимыми приборами сравнительно рыхлая, по полуострову 43 пункта, из них 17 станций в г. Петропавловске-Камчатском. На станциях сети используются акселерометры СМG-5T (Guralp) и AC-73i (GEOSIG). В работе представлены результаты сравнения записей землетрясений 2014 – 2015г этими приборами.

Развертывание на Камчатке сети современных цифровых приборов для регистрации ускорений грунта (до 2g) началось в 2007 году в рамках работ по созданию системы предупреждения об опасности цунами. К настоящему времени 38 сейсмических станций оборудованы акселерометрами CMG-5T(Gurulp) и 5 станций акселерометрами AC-73i (GEOSIG). Цифровые регистраторы, используемые с датчиками ускорений, обеспечивают качественное преобразование и синхронизацию сигналов акселерометров с временем UTC, хранение и передачу полученных данных в центр обработки.

Спецификации акселерометров:

	CMG-5T	AC-73i
максимальное регистрируемое ускорение	2g, 1g	2g
стандартная полоса частот	DC – 100Гц	DC – 200Гц
динамический диапазон	127дБ	134дБ
подавление межосевого сигнала не хуже	1%	0.5%
паразитные резонансы с частоты	450Гц	
температурный диапазон	от -20° до +70°	

На представленных ниже схемах показано размещение пунктов регистрации ускорений грунта на Камчатке и в областном центре.

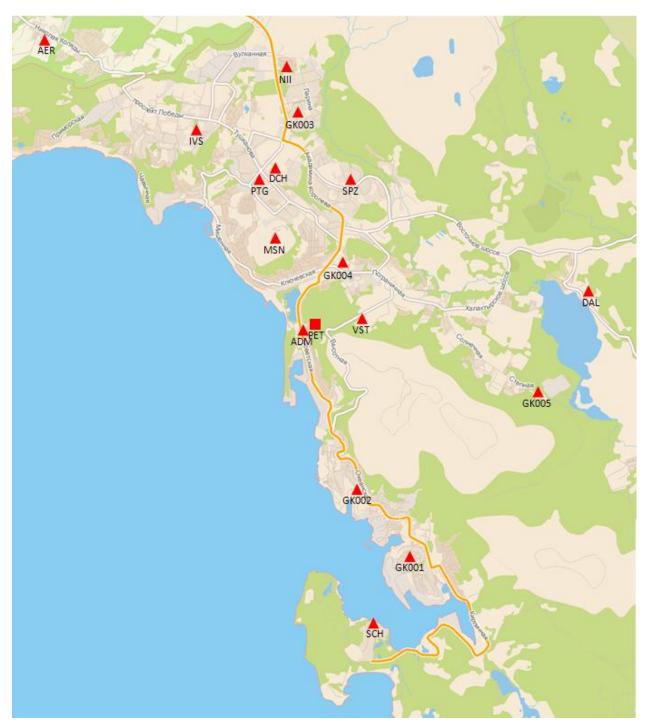


Схема размещения станций в г. Петропавловск Камчатский.

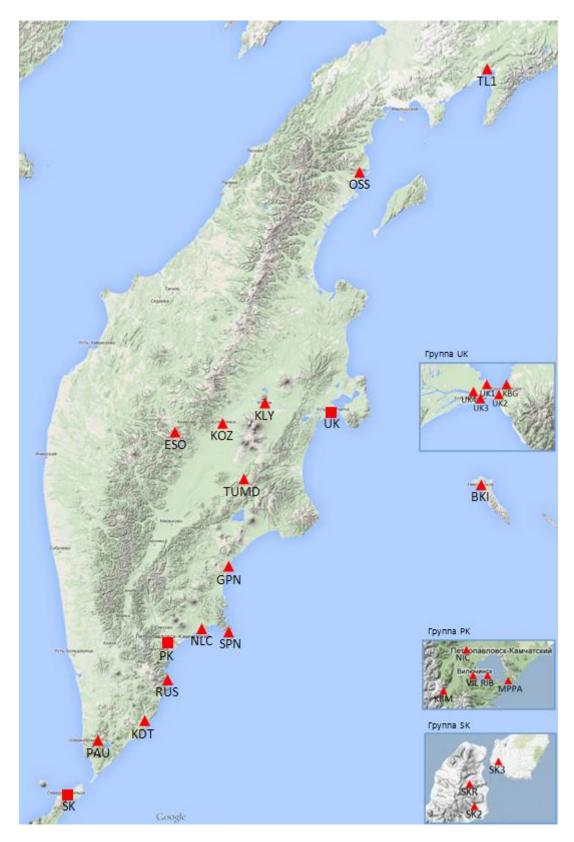
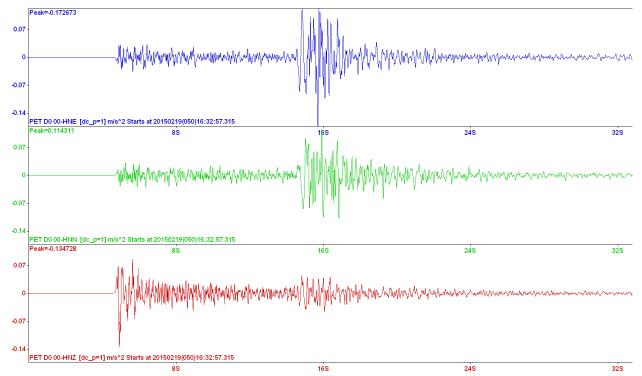
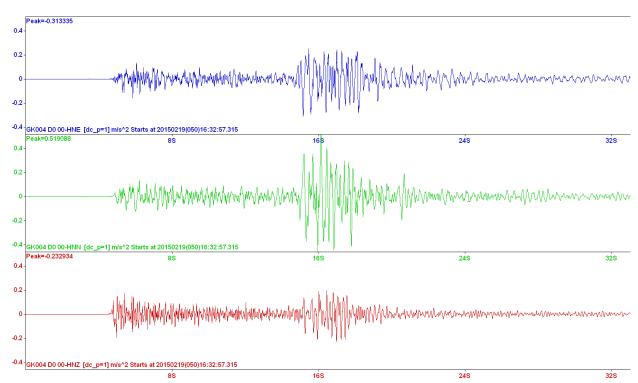




Схема размещения станций на Камчатке.

На следующих рисунках представлены примеры записей землетрясения, которое ощущалось в городе как 4-5 бальное.

Запись ускорения на станции «Петропавловск». Используется датчик СМG-5Т.

Запись ускорения на станции «Больница». Используется датчик АС-73i.

Землетрясения произошло 2015.02.19 в 16:32:45. Параметры землетрясения показаны в таблице ниже.

φ	λ	h	Mc	Ksĸ	MB	R
52,693	159,306	90	5,4	13,8	5,7	55

Обозначения в таблице: ϕ , λ , h — широта, долгота и глубина землетрясения, Mc — магнитуда по уровню огибающей коды (оценка M_{SH} по коде), Ksk — класс землетрясения из регионального каталога, MB — магнитуда из каталога NEIC, R — эпицентральное расстояние до станции «Петропавловск».

Инструментальный балл на станции «Петропавловск» (РЕТ) и «Больница» (GK004) составил соответственно 4,1 и 5,7 балла.

Представляется полезным оценить качество записей акселерометров. Записи землетрясений, использованные при сравнении, были получены на станции Институт (IVS, 53.066N, 158.609E), расположенной в черте города Петропавловск Камчатский.

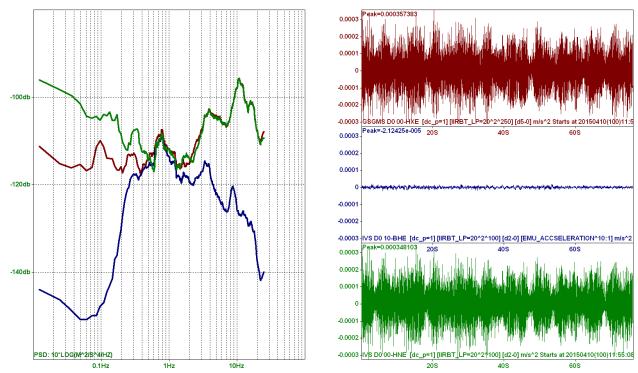
Акселерометры CMG-5T, и AC-73i были установлены в камере на глубине 5м. Записи каждого из акселерометров сравнивались с записью широкополосного велосиметра CMG-3TB(Guralp), установленного в скважине на глубине 25м рядом с постаментом. Т.о. записи скважинного велосиметра использовались как эталон.

Ниже приведён список землетрясений, записи которых были использованы.

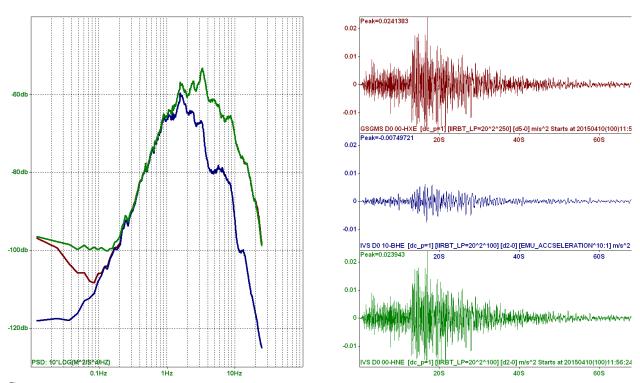
дата события	время события	широта	долгота	глубина км	Ks	MB
13.03.2015	6:46:13	51,9153	160,7792	76	12,1	4,7
19.03.2015	3:15:22	53,5067	162,0748	46	12,2	5,2
24.03.2015	11:09:15	53,5496	161,8777	56	12,3	5,1
24.03.2015	13:18:59	53,5396	162,0563	49	12,1	4,9
03.04.2015	4:33:36	49,8900	157,1465	50	12,1	4,8
10.04.2015	11:56:07	52,9155	160,1600	49	12,5	4,9
11.04.2015	3:59:50	51,7235	153,7005	467	12,4	4,7

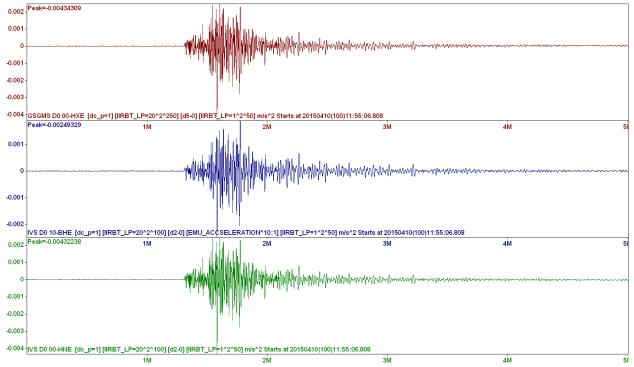
Здесь Ks – класс землетрясения из регионального каталога, MB – магнитуда из каталога NEIC.

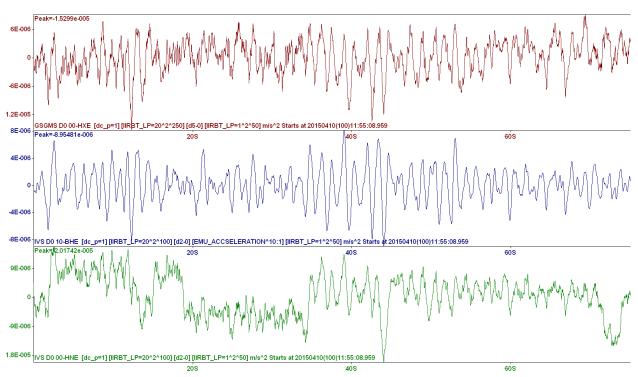
Для каждой компоненты всех землетрясений были получены 6 графиков (т.е. всего 126 графиков) в следующей последовательности:

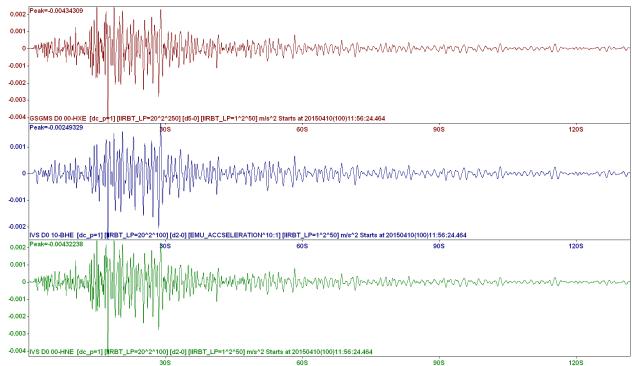

- 1. Исходные записи ускорений в полосе частот $0 \div 20\Gamma$ ц для акселерометров и полосе частот $0.0083 \div 20\Gamma$ ц для СМG-3ТВ. Длительность записей 5 минут.
- 2. Спектры мощности участка шума микросейсм перед началом записи сигнала землетрясения

- 3. Спектры мощности для участка трассы с записью землетрясения
- 4. Записи ускорений в полосе частот 0.01 ÷ 1Гц
- 5. Записи ускорений в полосе частот $0.01 \div 1\Gamma$ ц для участка шума микросейсм перед началом записи сигнала землетрясения
- 6. Записи ускорений в полосе частот $0.01 \div 1\Gamma$ ц для участка трассы с записью сигнала землетрясения. Эти записи используются для расчёта коэффициентов взаимной корреляции между записью ускорения широкополосным прибором СМG-3ТВ и записями ускорения акселерометрами.


Ниже представлен пример графиков записей компоненты EW для землетрясения 2015.04.10, 11:55:07.


Исходные записи ускорений в полосе частот $0 \div 20\Gamma$ ц.


Спектры мощности участка шума микросейсм перед началом записи сигнала землетрясения.


Спектры мощности для участка трассы с записью землетрясения.

Записи ускорений в полосе частот $0.01 \div 1\Gamma$ ц.

Записи ускорений в полосе частот $0.01 \div 1\Gamma$ ц для участка шума микросейсм перед началом записи сигнала землетрясения.

Записи ускорений в полосе частот $0.01 \div 1\Gamma$ ц для участка трассы с записью сигнала землетрясения.

В следующей таблице показана сводка коэффициентов взаимной корреляции между записью ускорения датчиком СМG-3ТВ и записями датчиков СМG-5Т и АС-73і в полосе частот $0.01 \div 1\Gamma$ ц. Жирным шрифтом в последней строке отмечены средние значения.

		CMG-5T			AC-73i			
дата	время	EW	NS	Z	EW	NS	Z	
события	события							
13.03.2015	6:46:13	0,954	0,947	0,910	0,958	0,951	0,967	
19.03.2015	3:15:22	0,987	0,988	0,987	0,985	0,988	0,988	
24.03.2015	11:09:15	0,987	0,984	0,991	0,988	0,986	0,990	
24.03.2015	13:18:59	0,978	0,981	0,986	0,980	0,981	0,990	
03.04.2015	4:33:36	0,932	0,746	0,829	0,944	0,936	0,920	
10.04.2015	11:56:07	0,945	0,941	0,979	0,946	0,942	0,980	
11.04.2015	3:59:50	0,961	0,987	0,953	0,931	0,983	0,961	
		0,963	0,939	0,948	0,962	0,967	0,971	

Анализ графиков позволяет сделать следующие выводы:

- 1. Оба акселерометра обеспечивают получение близких к эталонной записей достаточно сильных ускорений грунта.
- 2. На частотах ниже 0,2Гц, аппаратурный шум датчика CMG-5Т выше аппаратурного шума датчика AC-73i. Особо заметно это для канала с ориентацией EW. Это следует из сравнения спектров мощности слабых сигналов (микросейсм) и спектров мощности сильных сигналов (землетрясений): когда сейсмический сигнал существенно выше уровня шумов прибора спектры мощности записей акселерометров близки к спектрам широкополосного скважинного прибора.
- 3. На записях прибора СМG-5Т наблюдаются скачки и дрейф нулевой линии (это хорошо заметно в после фильтрации в полосе $0 \div 1\Gamma$ ц). Например, на записях каналов 2015.04.11(E,Z), 2015.04.03(E,N,Z), 2015.04.11(E,Z).
- 4. Корреляция записей скважинного прибора с записями акселерометров немного выше для датчика AC-73i (см. табл. выше).