ОПЫТ ПРИМЕНЕНИЯ МЕТОДА МИКРОСЕЙСМИЧЕСКОГО ЗОНДИРОВАНИЯ ДЛЯ ВЫЯВЛЕНИЯ ГЕОЛОГИЧЕСКИХ НЕОДНОРОДНОСТЕЙ В АРХАНГЕЛЬСКОЙ ОБЛАСТИ.

Французова В.И. Данилов К.Б.

Институт экологических проблем Севера УрО РАН, г. Архангельск.

Актуальность

Территория Архангельской области в геологическом плане исследована неравномерно - дорогой и трудоемкий процесс проведения геологогеофизических исследований являются причиной наличия значительной площади не доисследованных участков. Очевидно, что в сложившейся ситуации необходимо внедрение новых методик, позволяющих снизить затратность геофизических исследований. При этом в новых методиках должна быть учтена необходимость минимального вмешательства в экологическую систему региона, поскольку обширные территории Архангельской области заняты природными заказниками и заповедниками.

Метод микросейсмического зондирования

Микросейсмические колебания присутствуют повсеместно и при этом содержат геофизическую информацию. Из методов, анализирующих микросейсмы, следует выделить метод микросейсмического зондирования. Данный метод не позволяет получить прямые значения параметров земной коры, но позволяет с минимальными трудозатратами определить положение скоростных аномалий. При этом достигается достаточно высокая точность по горизонтали.

Теоретические основы метода микросейсмического зондирования

1. Метод основан на свойстве волн Релея увеличивать свою интенсивность при прохождении низкоскоростных и уменьшать ее при прохождении высокоскоростных неоднородностей;

2. Глубина залегания неоднородности оценивается половиной длины волны Релея;

3. С целью устранения влияния временного тренда микросейсмического сигнала интенсивность микросейсм рассчитывается относительно опорной станции;

4. Для определения характерного спектра микросейсм производится накопление сигнала в течении 1-1.5 часов.

Условная схема эксперимента

Пункты замеров станций: а- передвижной; б- опорной.

Разрез вдоль профиля

Поле микросейсм искажается над скоростной неоднородностью. Причем наиболее контрастное искажение наблюдается для длин волн, превышающих глубину залегания неоднородности в два раза.

Трубка взрыва им. М.В. Ломоносова

Схема основных разрывных нарушений по данным отчета НПО «Рудгеофизика»

Геоэлектрический разрез (Стогний, Коротков, 2010)

Волновые эффекты, наблюдаемые в поле преломленных волн на профиле, пересекающем кимберлитовую трубку им. М.В. Ломоносова. Фо- корреляция преломленной волны от кристаллического фундамента. Р₃, PSS – волны помехи [*Отчет ...*, 1989]. 1 – амплитудные спектры волн, Ф₀, Р₃, PSS; 2 – значения энергии, рассчитанные в окне 0.15 с для волны Ф₀.

Методика полевых работ

а — первый профиль, б — второй профиль Карта местности с контуром трубки им. М.В. Ломоносова и пунктами замеров микросейсм

Длительность регистрации микросейсм в каждом пункте 90 минут.

Шаг между пунктами замеров 50 м.

Длина первого профиля 2700 м, второго – 2375 м.

Результаты микросейсмического зондирования (Данилов 2011, 6; Данилов 2011, в)

а – первый профиль, *б* – второй профиль;

Глубинные разрезы относительной интенсивности микросейсмического поля вдоль профилей, пересекающих трубку взрыва им. М.В. Ломоносова, с номерами выделенных низкоскоростных неоднородностей и контуром трубки [Отчет..., 1987]

Область, соответствующая трубке взрыва, характеризуется : 1) конусовидным строением с вершиной, обращенной вниз; 2) промежуточной интенсификацией микросейсм.

Сопоставление результатов микросейсмического зондирования с физико-геологической моделью трубки взрыва

Глубинные разрезы относительной интенсивности микросейсмического поля вдоль профилей, пересекающих трубку взрыва им. М.В. Ломоносова, с наложением физикогеологической модели трубки взрыва [Губайдуллин, 2001]: а – первый профиль, б – второй профиль, Vpd, Vmz, Vup – соответственно падунская, мезенская, усть-пинежская свиты.

Результаты сопоставления показывают, что по данным ММЗ проявились все три блока трубки взрыва.

Наложение границ, выделенных по данным геоэлектрических исследований

Глубинные разрезы относительной интенсивности микросейсмического поля вдоль профилей, пересекающих трубку взрыва им. М.В. Ломоносова глубиной до 400 м, с наложением границ, выделенных по данным электроразведки [Стогний,Коротков, 2010]: а – первый профиль, б – второй профиль.

На диаграммах наблюдается совпадение зоны повышенной проводимости внутри трубки с зоной повышенных значений интенсивности микросейсм в западной части трубки. Вертикальные низкоскоростные зоны на расстояниях 0-800 м вдоль профиля, вероятно, являются тектоническими нарушениями, выполняющими роль подводящих каналов для зоны разгрузки минерализованных вод.

Трубка С10

Фрагмент тектонической карты в районе расположения Ненокского поля (*Тектоническая карта …,* 2010)

1 – трубка взрыва С10 в пределах контролирующего Верховского разлома, 2 – другие трубки взрыва, 3 – разломы, ограничивающие крупные структуры земной коры, 4 – разломы, активные на неотектоническом этапе, 5 – прочие разломы, 6 – изогипсы поверхности кристаллического фундамента, 7 – изолинии фундамента

Карта аномалий магнитного ПОЛЯ (Карта ... 2008) с нанесенными пунктами профилей, пересекающих трубку взрыва С10

Результаты обследования трубки взрыва С10 и ложной

геофизической аномалии

Геофизические разрезы вдоль профилей, пересекающих трубку взрыва С10 и ложной геофизической аномалии: а , б - профили трубки С10, в- профиль ложной геофизической аномалии.

По данным ММЗ были выделены тела, согласующиеся с магнитными аномалиями исследуемых тел. При этом трубке взрыва соответствует тело на глубинах от 50 м до более чем 1500 м. Ложная аномалия, по видимому, была обусловлена приповерхностным (до 200 м) контрастным низкоскоростным телом.

Мыс Нагурского о. Алек-сандры архипелаг Земля Франца-Иосифа

Карта о.Александры архипелага Земля-Франца-Иосифа с <u>пунктами</u> замеров

а - архипелага Земля-Франца-Иосифа; б – профили с
пунктами замеров микросейсм, 1 - мыс Нагурского о.
Александры, где проводились экспедиционные работы 2011 2012 гг.; 2,3 –соответственно номера профилей 2011 и 2012 гг.

участка.

Применение ММЗ даже на сравнительно коротких профилях позволило получить, согласующееся с геологогеофизическими данными, достаточно четкое представление о строении осадочного чехла данного

а— первый профиль; б— второй профиль; в— линия пересечения профилей № 1, 2

Диаграмма распределения относительной интенсивности микросейсм вдоль профилей

- Заключение по результатам исследования геологических объектов
- По результатам исследования определены основные параметры трубок взрыва:
- отличие скоростных свойств пород трубки взрыва от вмещающих пород;
- изменение структуры строения среды;
- геометрические признаки трубок взрыва, выраженные формой выделяемого объекта.
- Сопоставление результатов микросейсмического зондирования трубки взрыва с геофизическими данными, показывают, что распределения относительной интенсивности микросейсмического поля вдоль профилей, пересекающих трубки взрыва, отражают близкие к реальным,
- структуры трубки взрыва и вмещающей среды.
- Полученные результаты свидетельствуют о возможностях метода микросейсмического зондирования получать информацию о трубках взрыва и вмещающей среды с большими, относительно других
- применяемых геофизических методов, чувствительностью и
- разрешением по горизонтали.
- Метод позволяет получить дополнительную информацию о картировании подводящих каналов к трубке взрыва и зон разгрузки минерализованных вод.

Выводы

По результатам применения метода микросейсмического зондирования выделяется структура земной коры, согласующаяся с имеющейся геологической информацией. Данный факт подтверждает возможность использования микросейсм как надежного источника информации о локальных геологических объектах на территории Севера Русской плиты.

Спасибо за внимание!