АППАРАТУРНО-ПРОГРАММНЫЙ КОМПЛЕКС ЭЛЕКТРОМАГНИТНЫХ НАБЛЮДЕНИЙ КФ ГС РАН НА КАМЧАТКЕ

Копылова Г.Н., Смирнов А.А., Берсенева Н.Ю.

Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский, gala@emsd.ru, nata@emsd.ru

Введение

При проведении геофизического мониторинга территории Камчатского края, наряду с сейсмологическими данными, получаемыми с сети сейсмических станций, используются данные геофизических, геодезических, геохимических и др. видов наблюдений, в частности, при подготовке экспертных оценок развития сейсмической и вулканической активности, составляемых Камчатским филиалом Российского экспертного совета по прогнозу землетрясений, оценке сейсмической опасности и риска (КФ РЭС) [4].

В докладе рассматривается состояние электромагнитных наблюдений, проводимых Камчатским филиалом Геофизической службы РАН (КФ ГС РАН) и включающих четыре электротеллурических пункта (Верхняя Паратунка, Тундровый, Шипунский, Карымшина) и пункт геомагнитных наблюдений в составе комплексной геофизической обсерватории (КГО) «Карымшина» (рис. 1). Приводятся схемы расположения пунктов, дается характеристика методики наблюдений, включая используемые технические и программные средства регистрации, передачи, сбора, хранения и обработки данных наблюдений. Особое внимание уделяется содержанию пополняемых баз данных и архивов электромагнитных наблюдений за период времени с 1995 г. по настоящее время.

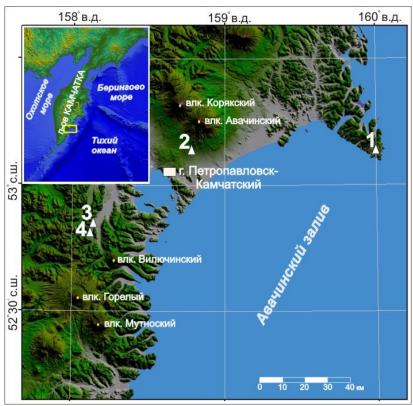


Рис. 1. Схема расположения пунктов электромагнитных наблюдений КФ ГС РАН: пункты электротеллурических наблюдений: 1 — Шипунский, 2 — Тундровый, 3 — Верхняя Паратунка; 4 — КГО «Карымшина».

Радиотелеметрические пункты электротеллурических наблюдений

Одной из приоритетных задач лаборатории геофизических исследований КФ ГС РАН является развитие и модернизация системы электротеллурических и геомагнитных наблюдений в целях мониторинга геодинамических процессов и оперативной диагностики признаков подготовки

сильных землетрясений в Камчатском сейсмоактивном регионе. Для этого проводятся работы по совершенствованию технических средств регистрации электромагнитных параметров, внедрению и использованию системы передачи данных в режиме реального времени, созданию и внедрению нового программного обеспечения.

Лаборатория геофизических исследований обеспечивает функционирование трех радиотелеметрических пунктов электротеллурических наблюдений: Верхняя Паратунка, Тундровый и Шипунский (табл.), на которых производятся измерения разностей теллурических потенциалов на системах измерительных линий с периодичностью 1 минута. Еще один пункт электротеллурических наблюдений расположен на территории КГО «Карымшина» (рис. 1).

Выбор районов проведения наблюдения за вариациями электротеллурического поля (ЭТП) осуществлялся по методике, предложенной д. г.-м. н. Морозом Ю.Ф. (ИВиС ДВО РАН, г. Петропавловск-Камчатский), ориентированной на изучение электрических токов, вызванных преимущественно литосферными источниками [3]. По данным площадных исследований методом МТЗ определялись районы с резко выраженной геоэлектрической неоднородностью среды. Длины измерительных линий для регистрации сигналов от внутриземных и ионосферных источников электромагнитного поля определялись с учетом входных импедансов среды на различных частотах и интенсивности вариаций магнитного поля.

С использованием этой методики создавались пункты Шипунский (SHP), Верхняя Паратунка (VP) и Тундровый (TUN) (рис. 1, 2, табл.). На этих пунктах осуществляется регистрация разностей теллурических потенциалов между парами электродов, закопанных в грунт на глубину около 2 м. Электроды представляют собой свинцовые монолитные пластины в форме кругов диаметром 330 мм, массой около 5 кг. Схемы расположения линий представлены на рис. 2. Периодичность измерений составляет 1 минута, разрешающая способность системы регистрации - 0.5 мВ.

В 2000-2001 гг. на всех трех пунктах были проведены работы по модернизации системы измерений, включающие перезакладку электродов и перевод радиотелеметрической передачи данных в режим реального времени.

Все три пункта оснащены следующим комплектом аппаратуры:

- блок цифровых каналов БЦК-13: диапазон входных сигналов от -2B до +2B, обеспечивается функция контроля целостности измерительных линий;
 - вторичный источник питания;
 - радиостанция DJ-480;
 - антенна ("волновой канал", семиэлементная);
 - антенный фидер (коаксиальный кабель длиной 4 м);
 - автоматический выключатель.

Данные регистрации разностей теллурических потенциалов на системах измерительных линий в режиме близком к реальному времени поступают на приемный центр геофизической радиотелеметрической системы (ГРТС), расположенный в лаборатории геофизических исследований КФ ГС РАН в г. Петропавловске-Камчатском, и хранятся в централизованной базе геофизических данных.

Обработка и визуализация текущих данных производится ежедневно с использованием информационной системы (ИС) POLYGON [2]. ИС POLYGON реализована в рамках архитектуры клиент – сервер, адаптирована к данным, представляющим временные ряды, и включает комплекс программ для ввода, конвертирования, отправки данных на сервер в базу данных, выборки данных, их визуализации и анализа (рис. 3). Результаты электротеллурических наблюдений представляются на сайте КФ ГС РАН по адресу http://www.emsd.ru/lgi/observations.

Данные о радиотелеметрических пунктах электротеллурических наблюдений КФ ГС РАН

Название пункта	Код	Широта град., с. ш.	Долгота град., в. д.	Удаленность от приемного центра, км	Время создания	Время модернизации
Шипунский	SHP	53.106	160.011	91	июнь 1995	октябрь 2001
Тундровый	TUN	53.056	158.786	10	июнь 1997	2000-2002
Верхняя Паратунка	VP	52.839	158.147	42	июль 1996	июнь-июль 2001

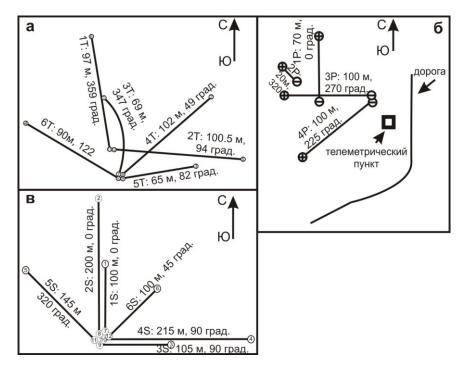


Рис. 2. Схемы расположения измерительных линий на пунктах электротеллурических наблюдений Тундровый (а), Верхняя Паратунка (б), Шипунский (в). Для каждой линии указаны ее название, длина и азимут в градусах (азимут соответствует направлению вектора, проведенного от условно отрицательного к условно положительному электроду)

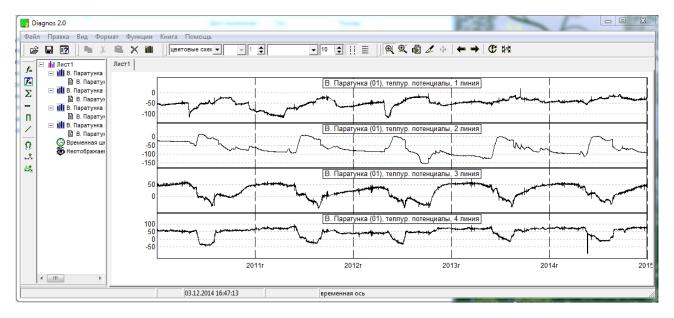


Рис. 3. Рабочее окно программы Diagnos в составе информационной системы POLYGON. Представлены данные электротеллурических наблюдений на пункте Верхняя Паратунка за период с 01 января 2010 по 01 января 2015 гг.

КГО «Карымшина»

На КГО «Карымшина» (координаты 52.827° с.ш. и 158.131° в.д.) (рис. 1).осуществляется регистрация трех компонент магнитного поля в частотном диапазоне УНЧ (0.003-40 Гц) с использованием магнитометра-вариометра, разработанного в ИЗМИРАН, г. Москва. Также здесь проводятся измерения разностей электротеллурических потенциалов на системе из двух линий, ориентированных в направлениях С-Ю и 3-В. Система регистрации состоит из шести диполей, датчиков и кабельных линий связи (рис. 4). В качестве датчиков используются свинцовые электроды, заглубленные на 1.3 м в грунт и залитые специальным электропроводящим цементом. Потенциал углового датчика (1 на рис. 4) принят за нулевой, при этом электрод этого датчика присоединен к

аналоговой земле регистратора. Динамический диапазон регистрируемых сигналов составляет 102 дБ, частота измерений – 1 Гц.

Трёхкомпонентный индукционный магнитометр включает в себя три датчика поля (рис. 4). Датчики состоят из индукционных катушек с сердечниками из аморфного сплава и предварительных усилителей, помещенных в алюминиевые ударопрочные, влагозащищенные корпуса. Датчики измерения горизонтальных компонент поля Н и D при установке были ориентированы вдоль магнитного меридиана и перпендикулярно к нему соответственно. Третий датчик предназначен для регистрации вертикальной компоненты магнитного поля Z. Параметры всех трех датчиков идентичны с отклонением менее 3% в абсолютных величинах коэффициента преобразования и не более 2° по фазе. Для уменьшения влияния сейсмических, ветровых, акустических и других видов помех датчики помещены в бетонный бокс, наполненный сухим песком. Датчики соединены с модулем АЦП кабелем длиной около ста метров (рис. 4).

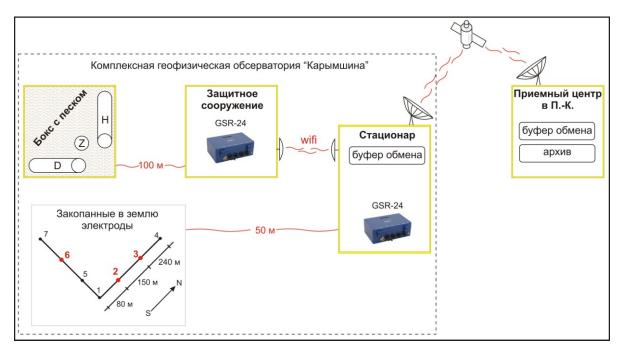


Рис. 4. Схема сбора и передачи данных геомагнитных и электротеллурических наблюдений с КГО «Карымшина» в КФ ГС РАН

Совместно с магнитометром в качестве аналого-цифрового преобразователя используется GSR-24, который обеспечивает динамический диапазон регистрируемых сигналов не менее 90 дБ при частоте дискретизации 100 Гц.

В октябре 2013 г. сотрудниками отдела информационных технологий КФ ГС РАН была запущена новая система передачи геомагнитных данных на приемный центр КФ ГС РАН в г. Петропавловске-Камчатском, обеспечивающая их получение в режиме реального времени. Аналоговые сигналы от датчиков магнитометра по кабельной линии передается на АЦП, где оцифровывается с частотой 100 Гц. Далее через канал Wi-Fi данные передаются на сервер, расположенный на стационаре КГО «Карымшина», где они временно хранятся на кольцевом буфере обмена, и затем передаются по каналам Internet на приемный центр КФ ГС РАН (рис. 4). Данные передаются и хранятся в формате MSEED.

С 2015 г. аналогичный АЦП GSR-24 используется для регистрации электротеллурических данных на КГО «Карымшина», на который подаются сигналы разности потенциалов между электродами 2, 3 и 6 и электродом 1 (рис. 4, жирным шрифтом обозначены электроды, подключенные к GSR-24). Аналоговый сигнал передается по кабельной линии на АПЦ, где оцифровывается с частотой 100 Γ ц и далее передается по каналам Internet на приемный центр КФ Γ С РАН в г. Петропавловске-Камчатском. Данные передаются и хранятся в формате MSEED.

Программное обеспечение. Одной из задач оператора, обеспечивающего первичную обработку и анализ данных геомагнитных наблюдений, является контроль их качества и пригодности для выделения сигналов подготовки землетрясений. При доступе к геомагнитным данным в режиме реального времени важное значение имеет автоматизация процесса получения и первичной

обработки больших массивов данных в целях экономии рабочего времени и устранения возможных субъективных ошибок в работе оператора.

В 2014 г. был создан пакет программ, обеспечивающих автоматизацию работы оператора по приему и первичной обработки данных геомагнитных наблюдений на КГО «Карымшина» [1].

В 2015 г. этот пакет был адаптирован для первичной обработки данных электротеллурических наблюдений, поступающих через АЦП GSR-24. В него входят программы, написанные на свободно распространяемом интерпретируемом языке программирования Python 2.7 (*.py), сценарии командной строки Windows (*.bat) и сторонние консольные программы (*.exe). Каждая часть пакета программ решает определенный круг задач, которые отражены на рис. 5.

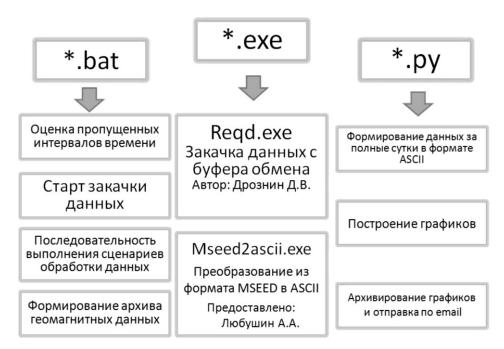


Рис. 5. Области применения пакета программ для оперативной обработки геомагнитных и электротеллурических данных на КГО «Карымшина»

формируются помощью ЭТОГО пакета программ архивы геомагнитных электротеллурических данных в форматах MSEED и ASCII и оценивается их качество. Результатом первичной обработки зарегистрированных геомагнитных и электротеллурических сигналов является построение их волновых форм, расчет дисперсий суточных временных рядов, а также их среднесуточных динамических спектров. Результаты обработки данных в форме графиков временных рядов и их спектров автоматически архивируются и отправляются оператору и заинтересованным пользователям по электронной почте. При наличии подключения к сети Internet и с использованием электронной почты можно осуществлять просмотр и оценку состояния текущих данных в режиме близком к реальному времени дистанционно, находясь не только на Камчатке, но и в других районах России и мира.

Список литературы

- 1. Берсенёва Н.Ю. Автоматизация обработки данных геомагнитных наблюдений на КГО «Карымшина», Камчатка // Исследования в области наук о Земле. Матер. XII региональной молодежная научн. конф. Петропавловск-Камчатский: КамГУ им. В. Беринга, 2014. С. 85-94.
- 2. Копылова Г.Н., Иванов В.Ю., Касимова В.А. Разработка элементов информационной системы комплексных геофизических наблюдений на территории Камчатки // Российский журнал наук о Земле. Том 11. doi:10.2205/2009ES000329, 2009.
- 3. Мороз Ю.Ф., Бахтиаров В.Ф., Воропаев В.Ф. и др. О мониторинге электротеллурического поля для прогноза сильных землетрясений на Камчатке // Вулканология и сейсмология. 1995. № 4-5. С. 139-149.
- 4. Чебров В.Н., Салтыков В.А., Серафимова Ю.К. Прогнозирование землетрясений на Камчатке. По материалам работы Камчатского филиала Российского экспертного совета по прогнозу землетрясений, оценке сейсмической опасности и риска в 1998–2009 гг. М.: Светоч Плюс, 2011. 304 с.