ИССЛЕДОВАНИЕ ДИНАМИКИ СЕЙСМИЧЕСКОГО РЕЖИМА КАМЧАТКИ В 1990–2014 ГГ. НА ОСНОВЕ ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИХ МЕТОДОВ

Богданов В.В., Павлов А.В.

Институт космофизических исследований и распространения радиоволн ДВО РАН с. Паратунка, pavlov@ikir.ru

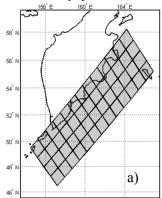
Введение

Теоретико-вероятностный подход к каталогу землетрясений позволяет определить на основе каталога случайные события и вычислить их вероятности P [1]. Анализ изменений распределений вероятностей P позволяет исследовать изменения в сейсмическом режиме [2]. В среднесрочном методе прогноза землетрясений КОЗ [4] используется безразмерная величина ξ , которая является мерой статистически значимых отклонений текущих значений исследуемого сейсмологического параметра от его долговременных значений. В представленной работе произведено вычисление параметра ξ_P на основе распределения вероятности для случайного события «попадание эпицентров сейсмических событий, произошедших в выбранном сейсмоактивном объёме V, в заданные интервалы широты $\Delta \phi_i$ и долготы $\Delta \lambda_j$ ». Проведён анализ динамики параметра ξ_P перед сильными землетрясениями с энергетическим классом $K_S \ge 14$, произошедших за временной интервал 1990 — 2014 гг. вдоль восточного побережья Камчатки на глубинах до 100 км. Всего было проанализировано 25 событий, часть из которых приведены в данной работе.

Методика исследований

При теоретико-вероятностном подходе каталог землетрясений можно представить в виде вероятностного пространства трех математических объектов, а именно: Ω – пространство элементарных событий, \tilde{F} – множество подмножеств случайных событий, P – вероятности этих событий [1]. При этом каждое землетрясение рассматривается как единичный исход ω_i в пространстве Ω , мощность которого за рассматриваемый период задается числом событий каталога. В свою очередь, каждый исход ω_i определяется системой случайных непрерывных величин: широтой φ_i , долготой λ_i , глубиной h_i , энергетическим классом K_i =1gE и временем t_i . Время единичного события как случайная величина из дальнейшего анализа в предлагаемой модели будет исключено. Так как случайные величины φ_i , λ_i , h_i и K_i заключены в соответствующие интервалы между минимальными и максимальными значениями, то для пространства элементарных событий справедливо

$$\Omega = \{ \omega: \varphi_{min} \leq \varphi \leq \varphi_{max}; \lambda_{min} \leq \lambda \leq \lambda_{max}; h_{min} \leq h \leq h_{max}; K_{min} \leq K \leq K_{max} \}$$
(1).


Максимальные и минимальные значения входящих в (1) случайных величин задаются геометрией реального сейсмического региона, а также его внутренними свойствами, определяющими энергетику события. Чтобы перейти от идеализированного вероятностного пространства к реальному эксперименту, необходимо границы пространства элементарных событий Ω и сами вероятности P определять из каталога землетрясений на основе его статистической обработки. Вероятность случайного события рассчитывалась по формуле

$$P(\Delta \varphi_i, \Delta \lambda_j, \Delta h_m, \Delta K_n) = P(\Delta \varphi_i) \times P(\Delta \lambda_j | \Delta \varphi_i) \times P(\Delta h_m | \Delta \lambda_j, \Delta \varphi_i) \times P(\Delta K_n | \Delta h_m, \Delta \lambda_j, \Delta \varphi_i)$$
(2),

где i, j, m и n — индексы, соответствующих интервалов случайных величин. В (2) приняты обозначения: $P(\Delta \phi_i)$ —безусловная плотность распределения сейсмических событий в зависимости от широты $\Delta \phi_i$; $P(\Delta \lambda_j | \Delta \phi_i)$ — плотность распределения сейсмических событий по $\Delta \lambda_j$ при условии, что их широта равна $\Delta \phi_i$; $P(\Delta h_m | \Delta \phi_i, \Delta \lambda_j)$ — плотность распределения сейсмических событий по Δh_m при условии, что их широта и долгота соответственно равны $\Delta \phi_i$ и $\Delta \lambda_j$; $P(\Delta K_n | \Delta \phi_i, \Delta \lambda_j, \Delta h_m)$ — плотность распределения сейсмических событий по ΔK_n при условии, что их долгота, широта и глубина соответственно равны $\Delta \phi_i$, $\Delta \lambda_j$, и Δh_m . Зная аналитический вид плотности распределения (2), можно вычислить вероятность того, что сейсмическое событие попадет в заданные интервалы: по широте $\Delta \phi_i = \phi_i - \phi_{i-1}$, долготе $\Delta \lambda_j = \lambda_j - \lambda_{j-1}$, глубине $\Delta h_m = h_m - h_{m-1}$ и по энергетическому классу $\Delta K_n = K_n - K_{n-1}$, где i, j, m и n — индексы, соответствующих интервалов случайных величин. При таком подходе каталог землетрясений, представленный в виде математического объекта трех элементов, является опорной моделью, на фоне которой можно отслеживать изменения в сейсмической активности, т.е. регистрировать вариации в распределении вероятностей в локальных областях сейсмического региона за различные интервалы времени [2]. В данной работе исследовалось распределение вероятностей для случайного события: «попадание эпицентров сейсмических событий,

произошедших в выбранном сейсмоактивном объёме V, в заданные интервалы широты $\Delta \varphi_i$ и долготы $\Delta \lambda_i$ ».

Для статистической обработки использовался каталог сейсмических событий Камчатского региона, составленный КФ ГС РАН. Рассматривались только землетрясения с энергетическим классом $K_S \ge 9$ и глубиной гипоцентров $h \le 100$ км. Распределение вероятностей сейсмических событий по широте и долготе $P(\Delta \varphi, \Delta \lambda)$ вычислялись в скользящем временном окне $\Delta T = 1$ год с шагом $\Delta t = 1$ месяц для пространственных ячеек с размерами по широте и долготе $\Delta \varphi \times \Delta \lambda = 1^{\circ} \times 1^{\circ}$ (рис.1а). Полная группа событий вероятностного пространства Ω образовывалась всеми землетрясениям, произошедшими за временной период ΔT в указанных областях. При вычислении вероятностей попадания сейсмических событий в пространственные ячейки с размерами $\Delta \varphi \times \Delta \lambda = 2^{\circ} \times 2^{\circ}$ и $\Delta \varphi \times \Delta \lambda = 3^{\circ} \times 3^{\circ}$, координаты ячейки выбирались так, чтобы координаты эпицентра исследуемого землетрясения с $K_S \ge 14$ совпадали с координатами центра ячейки или не выходили за её границы. При этом полная группа событий вероятностного пространства Ω образовывалась всеми землетрясениям внутри области с координатами $\varphi = 48^{\circ} - 58^{\circ}$ с.ш. и $\lambda = 154^{\circ} - 166^{\circ}$ в.д. (рис.1б).

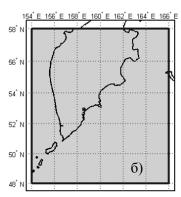


Рис.1. а) Области, для которых вычислялось распределение вероятностей $P(\Delta \varphi, \Delta \lambda)$; б) Область, сейсмические события которой составляют полную группу событий вероятностного пространства Ω для расчёта вероятностей попадания сейсмических событий в ячейки $\Delta \varphi \times \Delta \lambda = 2^{\circ} \times 2^{\circ}$ и $\Delta \varphi \times \Delta \lambda = 3^{\circ} \times 3^{\circ}$.

На основе полученных вероятностей были вычислены пространственно-временные распределения параметра ξ_P , которые показывают статистически значимые отклонения текущих значений вероятностей $P(\Delta \phi, \Delta \lambda)$ от их долговременных (фоновых) значений. Параметр ξ_P был определён на основе [4] и представлен в виде:

$$\xi_{P} = \begin{cases} \frac{\Delta P_{i} - sign(\Delta P_{i}) \cdot \left| \sigma_{P_{i_{T}}} \right|}{\left| \sigma_{P_{i_{T}}} \right|}, & \text{если } |\Delta P_{i}| > \left| \sigma_{P_{i_{T}}} \right| \\ 0, & \text{если } 0 \leq |\Delta P_{i}| \leq \left| \sigma_{P_{i_{T}}} \right| \end{cases}$$

$$\text{где } P_{i_{T}} \text{ и } \sigma_{P_{i_{T}}} = \sqrt{P_{i_{T}}(1 - P_{i_{T}})/N_{T}} \quad [3] \text{ текущие значения параметра } P(\Delta \phi, \Delta \lambda) \text{ и его стандартное отклонение в скользящем временном окне } \Delta T_{T}; P_{i_{A}} \text{ и } \sigma_{P_{i_{A}}} = \sqrt{P_{i_{A}}(1 - P_{i_{A}})/N_{A}} \text{ долговременные } (\Phi) \text{ округо в деления в скользящем окне } \Delta T_{T} > \Delta T : N_{T} \text{ и } N_{T} = \text{ нисло сейсмических событий } \end{cases}$$

где $P_{i_{\mathrm{T}}}$ и $\sigma_{P_{i_{\mathrm{T}}}} = \sqrt{P_{i_{\mathrm{T}}}(1-P_{i_{\mathrm{T}}})/N_{\mathrm{T}}}$ [3] текущие значения параметра $P(\Delta \varphi, \Delta \lambda)$ и его стандартное отклонение в скользящем временном окне $\Delta T_{\mathrm{T}};\ P_{i_{\mathrm{T}}}$ и $\sigma_{P_{i_{\mathrm{T}}}} = \sqrt{P_{i_{\mathrm{T}}}(1-P_{i_{\mathrm{T}}})/N_{\mathrm{T}}}$ долговременные (фоновые) значения в скользящем окне $\Delta T_{\mathrm{T}} > \Delta T_{\mathrm{T}};\ N_{\mathrm{T}}$ и N_{T} – число сейсмических событий, произошедших соответственно за временные периоды ΔT_{T} и ΔT_{T} (период инструментальных наблюдегий 01.01.1962 до начала периода ΔT_{T}); $\Delta P_{i} = P_{i_{\mathrm{T}}} - P_{i_{\mathrm{T}}}$ разность между текущим значением вероятности $P_{i_{\mathrm{T}}}$ и долговременным значением $P_{i_{\mathrm{T}}}$.

Полученные результаты

Пространственно-временные изменения параметра ξ_P , рассчитанного по формуле (3) и предшествовавшие ряду сильных сейсмических событий Камчатского региона, представлены на рис.2–12. Из рис.2а видно, что сейсмическому событию 02.03.1992 г. с энергетическим классом K=14.6 за период с 01.01.1990г. по 01.01.1991г. предшествовала локализация и усиление сейсмичности. При этом, значения параметр ξ_P в области подготовки землетрясения превысили 18 (рис.3). С сентября 1991 г. последовало ослабление сейсмической активности вплоть до события 02.03.1992 (рис.3). За событием 02.03.1992 г. последовала афтершоковая активизация (рис.2б), которая снизилась перед наступлением сейсмического события 08.06.1993 г. с K=15 (рис.3).

На рис.4а и рис.5 представлено распределение параметра ξ_P , рассчитанного до события 08.06.1993 г. Из рисунков видно, что этому событию предшествовало снижение сейсмической активности, как практически во всей расчетной области (за исключением района Комадорских

островов (рис.1а)), так и в области эпицентра готовящегося события. После события 08.06.1993 г. последовало повышение афтершоковой активности и наступление события 13.11.1993 г. с K=14.6 (рис.4б, рис.5).

Рассмотрим Кроноцкое землетрясение 05.12.1997 г. с K=15.5. В области его подготовки наблюдалась пониженная сейсмическая активность (рис.7), хотя непосредственно его наступлению предшествовало увеличение ξ_P до положительных значений (рис.6а).

Отрицательные значения параметр ξ_P принимал перед землетрясениями 08.03.1999 с K=14.3 и 08.10.2001 с K=14.1, которые затем сменились на положительные перед событием 15.03.2003 с K=14.2 (рис.8).

Перед событием 10.03.2007 г. с K=14.3 параметр ξ_P принимал значения, близкие нулю, а событию 20.02.2011 г. с K=14.1 предшествовало заметное понижение сейсмической активности и параметр ξ_P принимал отрицательные значения (рис.9).

В 2011-2013 гг. в Южной части сейсмофокальной зоны Камчатки произошла серия крупных сейсмических событий с энергетическими классами $K \ge 14$, которым предшествовало усиление сейсмической активности, превышавшее многолетние фоновые значения, что и отражает параметр ξ_P , принимающего в этот период значения доходящие до 50 (рис. 10-12).

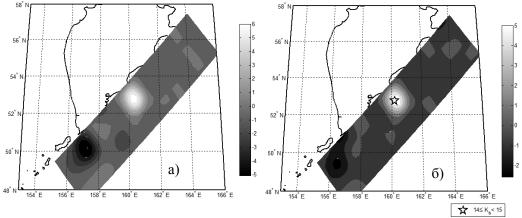


Рис.2. Распределение параметра ξ_P по областям $\Delta \phi \times \Delta \lambda = 1^{\circ} \times 1^{\circ}$ для временных интервалов: а) 01.01.1990 – 01.01.1991 гг. (до события 02.03.1992 г., K=14.6, h=20 км); б) 01.01.1992 – 01.01.1993 гг.

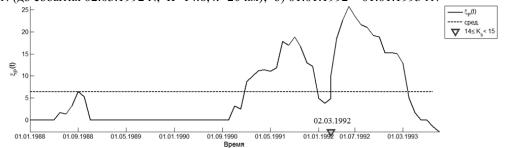


Рис.3. Изменение во времени параметра ξ_P , вычисленного для области $\Delta \phi = 51.7^{\circ} - 53.7^{\circ}$, $\Delta \lambda = 159.2^{\circ} - 161.2^{\circ}$, перед сейсмическим событием 02.03.1992 г., K = 14.6, h = 20 км.

Рис.4. Распределение параметра ξ_P по областям $\Delta \phi \times \Delta \lambda = 1^{\circ} \times 1^{\circ}$ для временных интервалов: а) 06.08.1992 – 07.06.1993 гг. (1 год, предшествующий событию 08.06.1993 г., K=15, h=40 км); б) 01.01.1993 – 01.01.1994 гг.

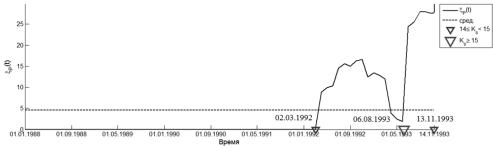


Рис.5. Изменение во времени параметра ξ_P , для области с координатами $\Delta \phi = 50.3^{\circ} - 53.3^{\circ}$ и $\Delta \lambda = 157.3^{\circ} - 160.3^{\circ}$, перед сейсмическими событиями 08.06.1993 г., K = 15, h = 40 км и 13.11.1993 г., K = 14.6, h = 40 км.

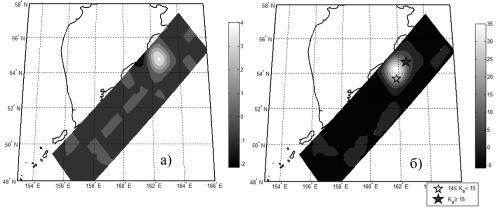


Рис.6. Распределение параметра ξ_P по областям $\Delta \phi \times \Delta \lambda = 1^{\circ} \times 1^{\circ}$ для временных интервалов: а) 01.01.1997 – 04.12.1997 гг. (до события 05.12.1997 г., K=15.5, h=10 км); б) 01.01.1997 – 01.01.1998 гг.

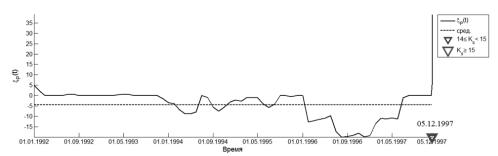


Рис.7. Изменение во времени параметра ξ_P , для области с координатами $\Delta \phi$ =53.14° – 56.14° и $\Delta \lambda$ =161.05° – 164.05°, перед сейсмическим событием 05.12.1997 г., K=15.5, h=10 км.

Рис.8. Изменение во времени параметра ξ_P , для области с координатами $\Delta \phi$ =50.65° – 53.65° и $\Delta \lambda$ =159.15° – 162.15°, перед сейсмическими событиями 08.03.1999 г., K=14.3, h=7 км; 08.10.2001 г., K=14.1, h=24 км и 15.03.2003 г., K=14.2, h=4.5 км.

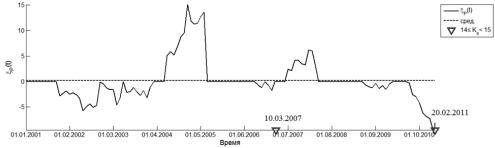


Рис.9. Изменение во времени параметра ξ_P , для области с координатами $\Delta \varphi = 54.7^{\circ} - 56.7^{\circ}$ и $\Delta \lambda = 161.4^{\circ} - 163.4^{\circ}$, перед сейсмическими событиями 10.03.2007 г., K = 14.3, h = 10 км и 20.02.2011 г., K = 14.1, h = 48.8 км.

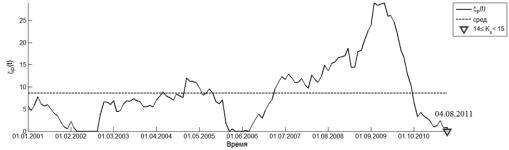


Рис.10. Изменение во времени параметра ξ_P , для области с координатами $\Delta \phi$ =48° – 50° и $\Delta \lambda$ =154.47° – 156.47°, перед сейсмическим событием 04.08.2011 г., K=14.3, h=50.9 км.

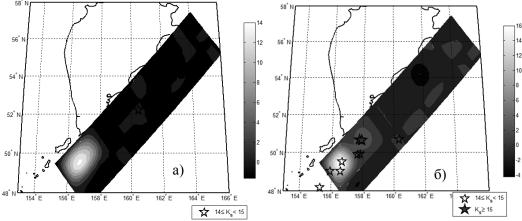


Рис.11. Распределение параметра ξ_P по областям $\Delta \phi \times \Delta \lambda = 1^{\circ} \times 1^{\circ}$ для временных интервалов: а) 2010 - 2011 гг. (до событий); б) 2012 - 2013 гг. (после событий).

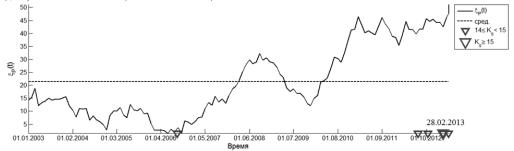


Рис.12. Изменение во времени параметра ξ_P , для области с координатами $\Delta \phi$ =48.3° − 51.3° и $\Delta \lambda$ =156.1 − 159.1°, предшествовавшее группе сейсмических событий с K≥14, произошедших в 2012 − 2013 гг.

Заключение

На основе вероятностного подхода к каталогу камчатских землетрясений проведено исследование сейсмического режима Камчатского региона за 1990-2014 гг. Рассматривая широту и долготу сейсмических событий, произошедших в сейсмоактивных областях Камчатского региона, как случайные величины, были вычислены их временные ряды вероятностей. На основе полученных вероятностей был вычислен параметр ξ_P , который показывает их статистически значимые отклонения от долговременных (фоновых) значений. Анализ значений, принимаемых параметром ξ_P перед наступлением 27 сейсмических событий с $K_S \ge 14$ показал, что $\xi_P < 0$ (сейсмическое затишье) предшествовали восьми событиям, $\xi_P = 0$ (текущий уровень сейсмичности не превышает фоновый) — семи событиям, и $\xi_P > 0$ (сейсмическая активизация) — двенадцати землетрясениям.

Список литературы

- 1. *Богданов В.В.* Вероятностная интерпретация закона повторяемости землетрясений на примере Камчатского региона // ДАН, 2006, том 3, с.393–397.
- 2. *Богданов В.В., Павлов А.В., Полюхова А.Л.* Вероятностная модель сейсмичности на примере каталога Камчатских землетрясений // Вулканология и сейсмология, 2010, № 6, с.52–64.
- 3. Вентцель Е.С. Теория вероятностей. М. Высшая школа, 1999.- 576 с.
- 4. Завьялов А.Д. Среднесрочный прогноз землетрясений. М.: Наука, 2006. 254 с.