АЛГОРИТМ КОЗ В РАЙОНЕ ВОДОХРАНИЛИЩ КОЙНА-ВАРНА, ИНДИЯ: ПЕРВЫЕ РЕЗУЛЬТАТЫ

Завьялов $A.Д.^{1}$, Смирнов $B.Б.^{1,2}$, Пономарев $A.B.^{1}$, Чада $P.K.^{3}$, Шринагеш $Д.^{3}$

¹ Институт физики Земли им. О.Ю.Шмидта РАН, Москва, Россия, zavyalov@ifz.ru ² МГУ им. М.В. Ломоносова, физический факультет, Москва, Россия ³ Национальный геофизический исследовательский институт, Хайдарабад, Индия

Введение

В данной статье представлены результаты, полученные в ходе создания карт ожидаемых землетрясений (КОЗ), для района водохранилищ Койна-Варна. Этот район интересен тем, что до строительства плотины Койна на севере (рис. 1) и заполнения соответствующего водохранилища (начало заполнения 1961 г.) он считался асейсмичным и инструментальных сейсмических наблюдений в нем не проводилось. Однако 10 декабря 1967 г. здесь неожиданно возникло сильнейшее землетрясение с M_L = 6.5, получившее название землетрясения Койна и ставшее классическим примером землетрясения, произошедшего в результате деятельности человека. Аналогичная ситуация повторилась и в результате строительства плотины Варна (южнее плотины Койна) и заполнения его водохранилища (начало заполнения 1985 г.). Таким образом, вот уже почти 50 лет в районе наблюдается сейсмическая активность, и ведутся сейсмические наблюдения.

Район Койна-Варна характеризуется переходным режимом сейсмического процесса, важной чертой которого является недостаточная длительность периода наблюдений, небольшие размеры района исследований и, следовательно, малое число сейсмических событий в каталоге. В процессе работы удалось преодолеть трудности, связанные со сравнительно коротким периодом инструментальных наблюдений и малым числом землетрясений в каталоге. Такая работа выполнена впервые. Ранее карты ожидаемых землетрясений строились только для сейсмоактивных районов с явно выраженной тектонической активностью: континентальных окраин, островных дуг, зон субдукции и т.д.

Исходные данные и выбор параметров

В качестве информационной базы для выполнения этой работы был использован локальный каталог землетрясений района Койна-Варна, покрывающий временной интервал с 1996 по 2012 гг. (около 17 лет) и включающий 4500 землетрясений с магнитудами $M_L=0$ -6.5, произошедшими в интервале глубин H=0-20 км. Линейные размеры зоны сейсмической активности составляют 40×60 км. Около половины всех землетрясений каталога составляют афтершоки землетрясений с $M_L \ge 4$. При расчете пространственно-временных распределений величин предвестниковых параметров и карт ожидаемых землетрясений афтершоки из каталога не исключались. В качестве представительной магнитуды была выбрана $M_c=2.1$, и во всех последующих расчетах параметров сейсмического режима использовались все землетрясения с магнитудами $M_L \ge 2.1$, которые регистрировались без пропусков, начиная с 1996 г. на всей территории района Койна-Варна. Средние значения погрешностей локации составляют около 1 км для эпицентров и около 3 км для гипоцентров.

В районе Койна-Варна был использован стандартный набор прогностических параметров сейсмического режима (динамические признаки), который используется и для построения КОЗ сейсмоактивных регионов с явно выраженной тектонической активностью: наклон графика повторяемости b-value, число землетрясений в виде относительных сейсмических затиший Nq, число землетрясений в виде активизации сейсмичности Na, выделившаяся сейсмическая энергия в виде энергетических затиший Eq, выделившаяся сейсмическая энергия в виде энергетических затиший Ea, плотность сейсмогенных разрывов Кср. Каждый из параметров и их математические определения подробно описаны в [2]. Все динамические прогностические признаки, за исключением параметра концентрации сейсмогенных разрывов $K_{\rm cp}$, который имеет кумулятивный характер и является пороговой величиной, представлялись в виде пространственно-временных распределений аномальных отклонений от соответствующего долговременного (фонового) уровня, нормированных на величину среднеквадратической ошибки его определения (так называемый ξ-параметр). Расчет пространственновременных распределений параметров сейсмического режима производился в перекрывающихся наполовину прямоугольных ячейках сетки $\Delta X \times \Delta Y$. В качестве базового варианта, мы выбрали размер пространственной ячейки равным 10×10 км. При расчетах распределений параметра Кср базовый размер ячейки был установлен 5×5 км. Величина скользящего временного окна $\Delta T_{\scriptscriptstyle T}$ для расчета текущих значений прогнозных признаков была выбрана $\Delta T_{\rm T} = 3$ года с шагом $\Delta t = 3$ мес.

В связи с отсутствием данных о стационарных прогностических признаках для территории Койна-Варна они в работе не использовались. Разработанная методика расчета КОЗ допускает такой

подход.

За период 1996-2012 гг. в исследуемом районе произошло 26 землетрясений и их групп с магнитудами $M_L{\ge}4.0$ (табл. 1). Прогноз землетрясений этого магнитудного диапазона представляет интерес, как в социально-экономическом, так и научном плане, а их количество достаточно для построения статистических выводов. Среди этих землетрясений 4 группы событий были наиболее сильными. Они включают в себя землетрясения с $5.0 \le M_L < 5.5$. 7 групп включают землетрясения с $4.5 \le M_L < 5.0$.

Таблица 1. Результаты ретроспективного прогноза землетрясений с $M_L \ge 4.0$, произошедших в районе Койна-Варна с 1996.01.01 по 2012.11.30

N₂	Дата	Время	Географические координаты, град.		Глубина,	Магни-	Прогностический признак					
п/п			координа Широта	ты, град. Долгота	КМ <i>Н</i>	M_L	b	Nq	Na	Eq	Ea	Kcp
1	1996.04.26	12:19:32	17.17	73.71	7	4.4	U	114	114	Eq	La	КСР
2	1997.04.25	16:22:53	17.35	73.76	3	4.4						
3	1998.02.11	01:08:47	17.17	73.77	6	4.3						+
	1998.02.14	00:59:49	17.17	73.73	10	4.2						+
4	1999.06.07	15:45:01	17.27	73.76	2	4.7			+			+
5	2000.03.12	18:03:54	17.20	73.72	12	5.2		+	+		+	+
6	2000.04.06	22:30:12	17.14	73.67	2	4.8						
7	2000.09.05	00:32:43	17.20	73.77	14	5.3		+				+
8	2000.12.08	13:23:05	17.11	73.74	7	4.1		+	+	+		+
9	2001.05.17	16:04:27	17.19	73.74	8	4.0			+		+	
10	2001.08.02	04:08:52	17.13	73.76	5	4.0		+	+	+		+
11	2003.03.27	06:18:23	17.34	73.79	8	4.1			+		+	
12	2005.03.14	09:43:48	17.14	73.76	3	5.0	+	+	+	+	+	+
	2005.03.15	02:07:07	17.18	73.76	10	4.2	+	+	+		+	+
	2005.03.26	00:56:36	17.16	73.77	2	4.0						
13	2005.06.07	21:32:06	17.24	73.72	14	4.2	+	+	+		+	+
14	2005.08.30	08:53:17	17.19	73.79	5	4.5						+
15	2005.11.20	18:50:41	17.20	73.76	5	4.0						+
16	2005.12.26	10:46:05	17.16	73.76	12	4.2						+
17	2006.04.17	16:39:59	17.16	73.77	8	4.6			+			+
18	2007.08.20	19:15:53	17.18	73.78	2	4.0			+		+	+
19	2007.11.24	10:57:48	17.14	73.79	9	4.3	+		+		+	+
20	2007.11.24	11:35:45	17.12	73.7	5	4.0		+			+	+
21	2008.07.29	19:10:51	17.31	73.74	4	4.2						+
22	2008.09.16	21:47:13	17.31	73.72	14	4.8						
23	2009.11.14	13:03:34	17.14	73.79	4	4.7	+	+	+		+	+
	2009.11.14	13:34:35	17.12	73.78	3	4.0						+
24	2009.12.12	11:51:25	17.13	73.78	5	5.1			+			+
	2009.12.12	16:25:41	17.16	73.8	12	4.3	+				+	+
25	2009.12.23	03:49:29	17.12	73.78	3	4.0						
26	2012.04.14	05:27:41	17.33	73.74	12	4.8		+		+		+
Общее число предсказанных землетрясений, Npr							6 (23)	10 (23)	14 (23)	4 (23)	11 (23)	23 (26)
Общее число предсказанных землетрясений в %%						26.1	43.5	60.9	17.4	47.8	88.5	
$M_L \ge 5.0$							2 (4)	3 (4)	3 (4)	1 (4)	3 (4)	4 (4)
$4.5 \le M_L < 5.0$							1(7)	2(7)	2 (7)	1(7)	1(7)	4(7)
	4.0≤ <i>M</i> ₁ <4.5						2	4	7	2	6	11
4.0 <u>≤</u> <i>M</i> _L <4.5						(12)	(12)	(12)	(12)	(12)	(15)	

Примечание: В скобках приведены значения общего числа землетрясений соответствующих магнитуд.

Расчет ретроспективных статистических характеристик параметров сейсмического режима

Расчеты ретроспективных статистических характеристик предвестниковых параметров выполнялись для различных уровнях тревоги, задаваемых исследователем, с последующим экспертным отбором тех значений, при которых прогнозная эффективность (отношение средней плотности потока сильных землетрясений во время тревог (или на площади тревог) к их средней плотности за время наблюдений (или на площади наблюдений) конкретного предвестника наиболее адекватно отвечала поставленной задаче: либо наибольшее число предсказанных землетрясений при достаточно большом

времени тревог, либо меньшее число предсказанных сильных землетрясений при малом времени тревог (стратегия Г.М. Молчана). Расчеты проводились по методике, описанной в [2]. В табл. 2 показаны ретроспективные статистические характеристики предвестников с уровнями тревог, выбранными экспертом для использования в дальнейших расчетах. Заметим, что эффективность большинства прогнозных признаков J для выбранных уровней тревоги оказалась более 3, т.е. эти признаки можно рассматривать как «весьма полезные» (см. табл. 3.2 в [2]). Эффективность только одного признака ξ_{ea} оказалась примерно в 2 раза ниже и равной J=1.58, что соответствует классификации «полезный».

Результаты использования каждого признака для прогноза землетрясений с $M_L \ge 4.0$ в районе водохранилищ Койна-Варна собраны в табл. 1. Из ее рассмотрения можно сделать следующие основные выводы:

- 1. Только группа землетрясений под № 12, состоящая из 3 событий, сильнейшее из которых имело магнитуду M_L =5.0, предварялось аномальными статистически значимыми значениями всех 6 прогнозных признаков.
- 2. Из общего числа землетрясений только 5 землетрясений (№№ 1, 2, 6, 22, 25) не предварялись аномалиями по какому-либо признаку.
- 3. Все 4 группы землетрясений, в число которых входят наиболее сильные события с $M_L \ge 5.0$, предварялись аномалиями по ряду признаков.
- 4. Из всех прогнозных признаков наиболее успешным по числу предсказанных землетрясений является плотность сейсмогенных разрывов K_{cp} . При его использовании 88.5% землетрясений с $M_L \ge 4.0$ было спрогнозировано.

Время действия карты ожидаемых землетрясений, полученное усреднением времен ожидания по всем 6 признакам ξ_b , ξ_{nq} , ξ_{na} , ξ_{eq} , ξ_{ea} , K_{cp} с выбранными уровнями тревоги, составило ΔT_{KO3} =2.13±0.94 лет, а площадь ожидания землетрясения с $M_L \ge 4.0 - \tilde{S}_{osc}^{\kappa} = 152\pm17$ км² (табл. 2).

Таблица 2. Ретроспективные статистические характеристики прогнозных признаков перед землетрясениями с $M_L \ge 4.0$, произошедшими в районе Койна-Варна с 1996.01.01 по 2012.09.30

Пара- метр <i>K</i> _i	Уровень тревоги	Вероят- ность обнару- жения $P(K_{i} D_{1})$	Вероятность ложной тревоги $P(K_{i} D_{2})$	Среднее время ожидания, годы $T_{\text{ож.cp}} \pm \sigma_{\text{т}}$	Средняя площадь ожидания, км 2 $S_{\text{ож.cp}} \pm \sigma_{\text{т}}$	Реальное число пред- ска-занных землетря- сений	Число ложных тревог / Число пропус- ков цели	Эффективность прогноза по времени $J_{\scriptscriptstyle \rm T}$
ξ́b	+2.0σ	0.1190	0.0211	1.5±1.1	133±26	6	10/71	3.84
$\xi_{ m nq}$	-2.0σ	0.2024	0.0227	1.8±2.2	133±47	10	2/66	5.39
ξna	+2.0σ	0.3929	0.0100	2.6±2.5	164±40	14	0/45	4.78
ξeq	-1.2σ	0.1310	0.0358	1.9±1.7	175±61	4	3/71	3.41
$\xi_{ m ea}$	+1.5σ	0.2500	0.1431	3.8±3.0	145±42	11	13/59	1.58
$K_{\rm cp}$	11.7	0.5684	0.1508	1.2±1.1	161±50	23	35/41	2.92

Примечание: Размер сетки: 10x10 км для параметров ξ_b , ξ_{nq} , ξ_{na} , ξ_{eq} , ξ_{ea} и 5x5 км для параметра K_{cp} .

Расчет безусловной вероятности возникновения сильного землетрясения

Для расчета величины безусловной вероятности возникновения сильного землетрясения в пространственной ячейке выбранных размеров используются данные о сильных землетрясениях (и их группах), произошедших в исследуемом районе за время наблюдений (табл. 1). При этом пространственные ячейки должны быть *не перекрывающимися* (*независимыми*). Каждое сейсмическое событие (или группа событий) представляется не точкой, соответствующей гипоцентру, а некоторой областью подготовки, в которой наблюдаются характерные изменения геофизических полей. В качестве оценки величины области подготовки землетрясений, в первом приближении, можно принять среднюю величину площади ожидания сильного землетрясения для комплекса прогностических признаков $\tilde{S}_{O\!M\!C}^{\kappa}$. Тогда среднее число сильных землетрясений и их групп, возникающих на площади ожидания $\tilde{S}_{O\!M\!C}^{\kappa}$ за время ожидания (время действия КОЗ) ΔT_{KO3} , будет равно $\lambda = \frac{\tilde{S}_{O\!M\!C}^{\kappa}}{S_n} \cdot \frac{\Delta T_{KO3}}{T_n} \cdot N_{o\!f\!M\!U}$, где $N_{o\!f\!M\!U}$ – общее число сильных землетрясений и их групп; T_{H} — период наблюдений, за время которого произошло $N_{o\!f\!M\!U}$ событий; S_{H} — площадь наблюдений, на которой произошло $N_{o\!f\!M\!U}$ событий. Назовем величину λ интенсивностью потока сильных землетрясений.

Если предположить, что поток сильных землетрясений подчиняется распределению Пуассона (в первом приближении этого достаточно), то безусловная вероятность возникновения *одного* силь-

ного землетрясения на площади ожидания $\tilde{S}^\kappa_{o\!s\!\kappa}$ за время ожидания ΔT_{KO3} будет равна [1] $P(D_1)=\lambda$ ех $\mathbb{Z}(-\lambda)$. Соответственно, $P(D_2)=1-P(D_1)$ – вероятность того, что землетрясение не произойдет. Полученное значение величины безусловной вероятности возникновения сильного землетрясения $P(D_1)$ присваивается каждой пространственной ячейке сетки. В нашем случае, подставляя необходимые значения параметров, получим $P(D_1)$ =0.1698. Тогда $P(D_2)$ =0.8302. Значения $P(D_1)$ приписывались каждой прямоугольной ячейке сетки, покрывающей регион исследований.

Расчет и первичный анализ карт ожидаемых землетрясений для района Койна-Варна

Совокупность значений условной вероятности $P(D_1|K)$ для всех пространственных ячеек сетки, получила название Карты Ожидаемых Землетрясений на период времени $[t_0, t_0 + \Delta T_{KO3}, \$ где ΔT_{KO3} – время действия КОЗ. Предполагается, что возникновение сильного землетрясения в этом временном интервале равновероятно. Однако, здесь уместно упомянуть работу М.О.Куценко, А.Д.Завьялова [3], в которой показано, что возникновение землетрясений в разные годичные интервалы времени ожидания не равновероятно. Оказалось, что возникновение сильных землетрясений наиболее вероятно в первые годы после появления предвестника. Практически для всех предвестников вероятность возникновения сильных события в первый год составила 25%, а в первые 5 лет – более 70%. Отметим, что эта работа была выполнена на материале каталогов тектонических землетрясений из разных сейсмоактивных регионов мира.

Для района Койна-Варна была рассчитана серия из 42 карт ожидаемых землетрясений, начиная с 2002.07.01 по 2012.10.01 с шагом 3 месяца с прогнозным периодом 2 года для каждой карты. Период с 1996.01.01 по 2002.06.30 (6.5 лет) был использован для обучения алгоритма и поэтому землетрясения, произошедшие в это время, в оценке ретроспективных результатов прогноза и эффективности алгоритма КОЗ не участвовали. Последняя карта в этой серии имеет прогнозный период с 2012.10.01 по 2014.09.30 и является объектом для проверки прогноза в реальном масштабе времени (рис. 1). Из рис. 1 следует, что наиболее опасными являются 2 района: один располагается южнее водохранилища Койна, а второй, более обширный — севернее водохранилища Варна. В настоящее время мы не располагаем данными о землетрясениях с $M_L \ge 4.0$, произошедших в исследуемом районе.

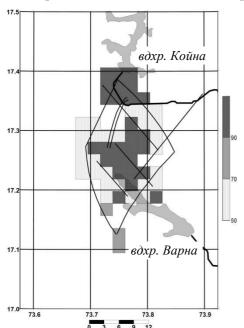


Рис. 1. Карта ожидаемых землетрясений на период 2012.10.01-2014.09.30.

На каждую карту ожидаемых землетрясений наносились все землетрясения с $M_L \ge 4.0$, произошедшие в течение ее прогнозного периода и рассчитывалась площадь тревожных зон с разным уровнем условной вероятности $P(D_1|K)$. Типичная карта ожидаемых землетрясений для района Койна-Варна на двухлетний период 2003.10.01-2005.09.30 представлена на рис. 2а. Еще одна КОЗ с другим прогнозным периодом показана на рис. 2б. На обеих картах сильные землетрясения возникли в зонах с уровнем условной вероятности $P(D_1|K) \ge 90\%$ в течение прогнозного периода.

Результаты анализа всей серии рассчитанных КОЗ сведены в табл. 3. Из нее следует, что за период ретроспективного прогноза 2003.01.01 по 2012.09.30 при уровне условной вероятности $P(D_1|K) \ge 90\%$, который более чем в 5 раз превышает уровень безусловной вероятности, были спрогнозированы оба наиболее сильнейших землетрясений с $M_L \ge 5.0$ ($N \ge N \ge 12$, 24), 3 землетрясения из 5 из диапазона $4.5 \le M_L < 5.0$ ($N \ge N \ge 14$, 23, 26), и 5 из 9 землетрясений с $4.0 \le M_L < 4.5$ ($N \ge N \ge 13$, 15, 19, 25). В целом из 16 произошедших сильных землетрясений в зоне с $P(D_1|K) \ge 90\%$ произошло 9 (56.3%). При этом площадь, района наблюдений S_H с уровнем сейсмической активности $0.1 \ \frac{1}{200}$, оказавшаяся в зоне с 90% уровнем

условной вероятности составила $20.4\pm8.4\%$. Интегральная прогнозная эффективность алгоритма КОЗ на этом уровне условной вероятности составила $J_{\text{коз}}$ =2.76. В табл. 3 приведены аналогичные данные и для других уровней условной вероятности 50% и 70%.

Выводы

В статье описаны расчеты КОЗ для района Койна-Варна и дан первичный анализ полученных результатов. Выполнен ретроспективный анализ прогнозной эффективности каждого из сейсмологических предвестников, использованных в алгоритме КОЗ. Оказалось, что из всех прогнозных призна-

ков наиболее успешным по числу предсказанных землетрясений является плотность сейсмогенных разрывов K_{cp} . Получена оценка величины безусловной вероятности возникновения сильного землетрясения в ячейках сетки $P(D_1) = 0.1698$.

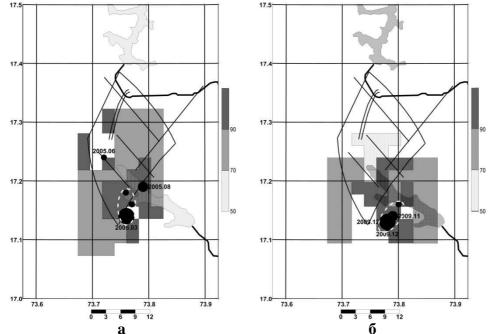


Рис. 2. Карта ожидаемых землетрясений (карта распределения условной вероятности) на период 2003.10.01-2005.09.30 (а) и 2009.01.01-2010.12.31 (б). На картах нанесены эпицентры землетрясений и их групп с $M_L \ge 4.0$, произошедшие в течение времени действия КОЗ (2 года). Размер кружков пропорционален длине разрыва в очаге соответствующего землетрясения в масштабе карты. Пунктирный эллипс объединяет группу землетрясений, произошедших 2005.03.14-26 (а) и 2009.12.12-23 (б).

Полученные впервые результаты применения алгоритма КОЗ в классическом районе с переходным режимом сейсмичности оказались обнадеживающими. Они показали его достаточно высокую прогнозную эффективность, оказавшуюся равной $J_{\rm коз}=2.76$. В зонах с уровнем условной вероятности $P(D_1|K) \ge 90\%$ произошло 56.3% всех землетрясений $M_L \ge 4.0$. При этом площадь тревог составила $20.4\pm 8.4\%$ от общей площади наблюдений. Особенно эффективно алгоритм КОЗ проявил себя в прогнозе наиболее сильных землетрясений региона Койна-Варна, произошедших за период ретроспективного прогноза. Возможно, что в дальнейшем более тщательная настройка параметров алгоритма позволит увеличить интегральный показатель эффективности прогноза.

Получена карта ожидаемых землетрясений на период с 2012.10.01 по 2014.09.30, которая явится объектом для проверки прогноза в реальном масштабе времени.

Таблица 3. Результаты ретроспективного прогноза землетрясений с $M_L \ge 4.0$, произошедших в районе Койна-Варна с 2002.07.01 по 2012.11.30, с использованием КОЗ

Диапазон магнитуд	Уровень условной вероятно- сти, $P(D_1 K)$				
	50 %	70 %	90%		
$M_L \ge 5.0$	2/2	2/2	2/2		
$4.5 \le M_L < 5.0$	4/5	3/5	3/5		
$5.0 \le M_L < 4.5$	7/9	6/9	4/9		
Число предсказанных землетрясений, Npr	13	11	9		
Общее число произошедших сильных землетрясений, $N_{oбuq}$		16			
Число предсказанных землетрясений в %%	81.3	68.8	56.3		
Средняя площадь тревог $\tilde{S}_{mp}\Big/_{S_H} 6 \%$	40.5±7.6	36.6±8.8	20.4±8.4		
Эффективность КОЗ $J_{\kappa_{03}}$	2.01	1.88	2.76		

Список литературы

- 1. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. 576 с.
- 2. Завьялов А.Д. Среднесрочный прогноз землетрясений: основы, методика, реализация. М.: Наука, 2006. 254 с.
- 3. Куценко М.О., Завьялов А.Д. Вероятность землетрясения на интервале времени ожидания по комплексу прогностических признаков // Материалы 12-ой Уральской молодежной научной школы по геофизике. Пермь, 21-25 марта 2011 г. С. 131-136.