О КЛЮЧЕВОЙ РОЛИ ЦЕЛОЧИСЛЕННЫХ РЕЗОНАНСОВ ПРИ ИЗУЧЕНИИ ПРИЧИН ВОЗНИКНОВЕНИЯ СИЛЬНЫХ МИРОВЫХ И РЕГИОНАЛЬНЫХ (КАМЧАТКА, КУРИЛЬСКИЕ ОСТРОВА) ЗЕМЛЕТРЯСЕНИЙ И ОЦЕНКА СЕЙСМИЧЕСКОЙ ОПАСНОСТИ ДЛЯ г. ПЕТРОПАВЛОВСКА-КАМЧАТСКОГО НА БЛИЖАЙШИЕ 40 ЛЕТ

Широков В.А.

Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский, shirokov@emsd.ru

Введение

Поясним термин *целочисленный резонанс*. Если отношение двух частот (или периодов) колебаний или частот вращения кратны отношению целых чисел, то говорят, что они находятся в целочисленном резонансе. Важность этого физического явления состоит в том, что при резонансе обязательно происходит взаимодействие тел, которое поддерживает целочисленную кратность частот, что и предопределяет устойчивость резонанса [2]. В общем случае для двух периодов T_X и T_Y резонанс будет целочисленным, если выполняется приближенное равенство

$$nT_X \approx mT_Y,$$
 (1)

где п и т – целые положительные числа. При этом должно выполняться условие: параметр резонанса d, являющийся частным от деления модуля относительной разницы $nT_X - mTy$ на максимальное из двух значений nT_x и mT_y , соответствует некоторому условно выбранному малому значению d(принято $d \le 10^3$). Допустим, что в (1) $mT_y \le nT_x$ (можно и наоборот). Тогда $d = (nT_x - mT_y)/nT_x = (1-mT_y / nT_x) \le 10^3$. Отсюда получаем, что (1 - 10^3) = $0.999 \le mT_y/nT_x$ или $mT_y/nT_x \ge 0.999$. Это достаточно жесткое условие резонанса. Для резонансных явлений, связанных с землетрясениями, принято, что периоды ритмов Тх и Ту должны определяться с точностью не хуже, чем до одной тысячной доли года. Такие ритмы именуются устойчивыми. Поясним, как обеспечивается устойчивость резонанса. Одним из ключевых параметров резонанса является период полного цикла резонанса T_{XY}. Этот период является среднегеометрическим значением левой и правой частей уравнения (1), т.е. равен положительному значению квадратного корня из произведения $nT_X mT_Y$. Через каждый период полного цикла целочисленный резонанс повторяется заново, чем и определяется его устойчивость. Еще одно условие состоит в том, что m и n не должны иметь общего делителя, поэтому не должны делиться без остатка на любое (кроме 1) целое число, что означает, что находятся минимальные значения пары чисел п и т. Рассмотрим предельный случай, когда левая и правая части (1) равны. Тогда период полного цикла равен $nT_X = mT_Y$. Поэтому период полного цикла можно считать основным тоном для двух ритмов, а сами ритмы являются его п-ой и т-ой гармониками. Поясним, что первая гармоника соответствует периоду соответствующего ритма. При использовании метода целочисленных резонансов необходимо выполнение всех указанных выше условий. Далее вместо слов иелочисленный резонанс часто слово иелочисленный опускается. Интерес к изучению явления целочисленного резонанса понятен, так как, в связи с его устойчивостью, он предсказуем. Это и является основой прогнозов. Но каждому известны со школьной скамьи и разрушительные свойства резонанса, в частности, в отношении различных технических устройств. Возникает вопрос, не являются ли целочисленные резонансы причиной возникновения сильных землетрясений, вулканических извержений и других природных катастрофических явлений. В такой постановке этот вопрос не рассматривался.

Методика долгосрочного прогноза землетрясений на основе использования целочисленных резонансов

При выявлении резонансов необходимо сначала найти как минимум два устойчивых ритма, для которых выполняются условия резонанса, и написать уравнение (1). Для любого устойчивого ритма с периодом T_1 фаза события $\Phi(T_1)$, произошедшего в момент времени t по Гринвичскому времени, рассчитывается по формуле

$$\Phi(t) = (t - t_{01})/T_1 - \text{entire } ((t - t_{01})/T_1), \tag{2}$$

где entire — целая часть, а t_{01} - условно выбранная начальная нулевая дата, которая должна быть по времени меньше даты любого события каталога. Фаза Φ меняется от 0 до 1 по кольцу, поэтому $\Phi=0.0$ и $\Phi=1.0$ тождественно равны. Даты последовательных нулевых фаз ритмов рассчитываются по очевидной формуле $D(\Phi_{10})=t_{01}+n\cdot T_1$, где n=0,1,2,3,4 и т.д.

После написания уравнения (1) необходимо отобразить события по фазам двух совместно рассматриваемых ритмов Φ_x (горизонтальная ось) и Φ_y (вертикальная ось) в площади фазового квадрата (Φ_x , Φ_y) с использованием затем метода фазовых траекторий (МФТ) [11, 15] для расчета «опасных» временных интервалов. Данный метод позволяет оценивать статистическую значимость прогнозов и рассчитывать временные интервалы повышенной вероятности возникновения событий.

В целом алгоритм прогноза состоит из следующих процедур: 1) получение по возможности однородного по магнитуде каталога событий за длительный срок; 2) выявление минимум двух устойчивых ритмов, для которых составляется уравнение резонанса (1) с оценкой параметра d; 3) оценка статистической значимости неравномерного распределения событий по фазам каждого ритма; 4) отображение событий каталога в плоскости фазового квадрата (Φ_X , Φ_Y) с целью выявления «опасных» окон и расчета «опасных» временных интервалов будущих событий; 5) оценка эффективности прогноза по ретроспективным данным по определению А.А.Гусева [4]; 6) оценка вероятности возникновения будущих событий в «опасных» интервалах и вне их.

Исходные данные о землетрясениях

Сильные землетрясения Камчатки с 1737 г. с глубиной до 125 км. Список землетрясений Камчатки с точностью временной привязки до двух месяцев в полосе широт от 51° до 57° с.ш. и долгот от 155° до 163.5° в.д. составлен для событий с моментной магнитудой $M_w \geq 7.5$ [5], происходивших к западу от глубоководного желоба. События 23.11.1899 г. и 6.09.1866 г. исключены как ошибочные [3, 9, 10]. Список включает 20 событий с $M_w \geq 7.5$ из [5] , для которых указаны год, месяц, дата и в скобках — M_w и после тире балльность (если она равна или более 6) в г. Петропавловске-Камчатском по 12-балльной шкале MSK-64:

1737/10/17 (9.2-8.5), 1737/11/04 (8.0), 1742/11/18 (7.5), 1790/12/02 (7.5), 1791/04/15 (7.5), 1792/08/23 (8.8-8), 1841/05/17 (9.0-8), 1848/июнь-сентябрь (7.5), 1854/06/27 (7.7), 1904/06/25 (7.5-8), 1923/02/03 (8.5-6), 1923/02/24 (7.6), 1923/04/13 (7.7), 1927/12/28 (7.5), 1952/11/04 (9.0-7), 1959/05/04(8.0-8), 1971/11/24 (7.5-7), 1971/12/15 (7.8), 1993/06/08 (7.5), 1997/12/05 (7.8-6).

Землетрясения Курильских о-вов с глубиной до 100 км. В список включены 14 событий в полосе широт от 41.8° до 49° с.ш. с $M \ge 7.8$ и глубиной до 100 км [7] за период 1843-2000 гг. и далее по данным NEIC GS USA. В скобках указана магнитуда и глубина очагов в км: 1843/04/25 (М8.2, 40 км), 1906/04/06 (7.8, 40), 1915/05/01 (8.3, 30), 1918/09/07 (8.2, 40), 1918/11/08 (7.9, 40), 1952/03/04 (8.3, 50), 1958/11/06 (8.2, 40), 1963/10/13 (8.1, 47), 1969/08/11 (8.2, 40), 1973/06/17 (7.9, 55), 1994/10/04 (7.9, 26), 2003/09/25 (M_w 8.5, 33), 2006/11/15 (M_w 8.3, 10), 2007/01/13 (M_w 8.1, 10).

Глубокие землетрясения Курило-Камчатской зоны с глубиной более 300 км. В список включены 13 землетрясений с $M \ge 7.3$ в полосе широт от 43.6° до 54.9° с.ш. за период 1900-2000 гг. из [7] и далее по данным NEIC GS USA в шкале M_w . В скобках даны M и H в км. 1902/06/11 (M8.0, 600 км), 1907/05/25 (7.4, 600), 1917/07/31 (7.5, 460), 1918/01/30 (7.7, 350), 1931/02/20 (7.3, 350), 1940/07/10 (7.3, 580), 1943/11/28 (7.6, 350), 1950/02/28 (7.8, 340), 1957/01/03 (7.4, 570), 2008/07/05 (M_w 7.7, 630), 2008/11/24 (M_w 7.3, 392), 2012/08/14 (M_w 7.7, 500), 2013/05/24 (M_w 8.3, 609). Наиболее сильным было событие на Камчатке 24.05.2013 г. с M_w = 8.3.

Сильные мировые землетрясения. Список 18 землетрясений с $M_{\rm w} \ge 8.6$ с 1600 г. приведен в другом сообщении автора, представленном на конференцию.

Долгосрочные прогнозы землетрясений мира, Камчатки и Курильских о-вов

В другом сообщении автора, представленном на конференцию, показано, что наряду с астрономическими ритмами впервые рассчитаны другие устойчивые ритмы, связанные с лунным ритмом 18.613 г. целочисленными резонансами. К ним относятся ритмы 9.781 г., 17.1539 г., 26.0582 г., 130.291 г. и их гармоники, которые используются далее для задач прогноза.

О важной роли известных по справочникам астрономических ритмов и возможности их использования для прогноза указывалось в многочисленных работах прошлого столетия, ориентированных в том числе на исследования прогнозного характера [6, 8, 12-14].

Прогноз землетрясений Камчатки. Формула резонанса: $3 \cdot (2 \cdot 26.0582 \text{ г.}) = 3 \cdot 52.1164 \text{ г.} \approx 16 \cdot 9.781 \text{ г.}$, $d = 0.95 \cdot 10^{-3}$. Полный цикл резонанса равен 156.423 г. При оценках вероятности распределения 20 событий по фазам ритмов по формуле Бернулли [1] значимыми являются ритмы 52.1164 г. и 9.781 г./2 = 4.8905 г. Но вместо последнего ритма используется ритм 9.781 г., для которого все события с $M \ge 7.6$ (N = 12) неслучайно приурочены к трем небольшим по площади «опасным» окнам (рис. 1а). Вне окон оказались только два ($M_w = 7.5$) из 20 событий.

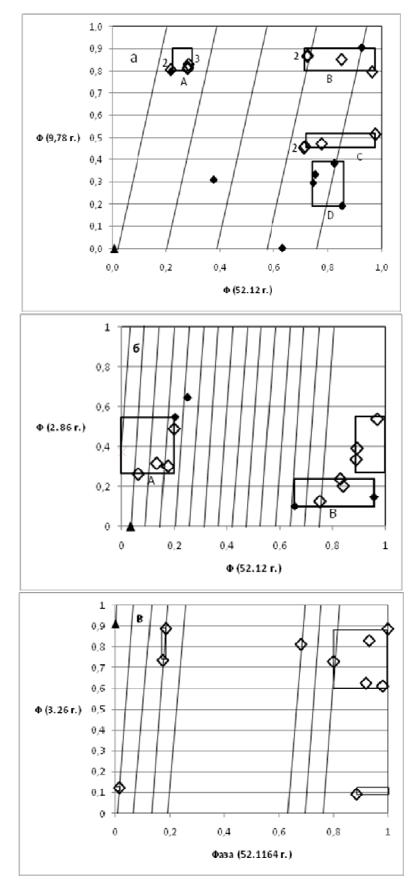


Рис. 1. Совместное распределение по фазе двух ритмов сильных землетрясений Камчатки (а), Курильских о-ов (б) и глубоких курило-камчатских землетрясений (в). В трех фазовых квадратах выделены прямоугольные «опасные» окна, текущие фазовые траектории (наклонные линии), начинающиеся с черных треугольников. Землетрясения обозначены ромбами (более сильные события в виде светлых ромбов). Ритм 2.86. г. = (17.1539 г./6), а ритм 3.26 г. = (9.781 г./3).

Нулевая дата ритмов – 1700.0 г. Текущая фазовая траектория, начинающаяся с даты 2012.840 г. (черный треугольник), впервые пересекает «опасное» окно в интервале декабрь 2049 г. – январь 2051 г. (вероятность возникновения одного или более событий в нем р = 0.5) и далее в период декабрь 2053 г. – ноябрь 2055 г. (p = 0.5). Указанная выше «пауза» длительностью 37 лет характерна только для начальной третьей части полного цикла 156.423 г. В двух предыдущих 37-летних «паузах» 156летнего цикла события с $M \ge 7.0$ не известны. В этих двух «паузах» сотрясений более 5 баллов на средних грунтах г. Петропавловска-Камчатского не отмечено. Поэтому вероятность р возникновения на Камчатке «опасных» событий с $M_w \ge 7.7$ и сотрясений силой 8 и более баллов в краевом центре в этот период весьма мала. Допустим, что одно из таких событий в паузах в период с 1841 г. произошло. Тогда для пуассоновского потока событий в «паузах» получим оценку p = 0.2, которую можно считать максимальной. Эффективность прогноза I по ретроспективным данным равна отношению доли попавших в «опасные» окна событий (18/20 = 0.90) к доле площади четырех «опасных» окон (0.0715) относительно площади фазового квадрата, принятой за 1. В итоге I = 12.6. Сопоставим 37-летнюю текущую «паузу» с прогнозом работы [11]. В ней на основе использования 19-летнего лунного и 22-летнего солнечного Хейловского циклов в период до 2031 г. на Камчатке землетрясения с $M_w \ge 7.6$ ожидаются только с августа 2015 по июль 2017 г. Если этот прогноз при тех же предположениях [11] продлить далее, то окажется, что следующая «активная» фаза наступит не ранее 2046 г. Таким образом, по двум почти независимым оценкам в ближайшие 32 года расхождение в прогнозах выражается только в существовании «активной» фазы в период август 2015-июль 2017 гг. согласно [11].

Прогноз землетрясений Курильских о-вов с глубиной очагов до 100 км. Используются значимые ритмы 52.1164 г. и 6-ая гармоника рассчитанного устойчивого ритма 17.1539 г., т.е. ритм 2.858983(3) г. Формула резонанса для землетрясений с $M \ge 7.8$ имеет вид 35.52.1164 г. $\approx 638.2.859$ г., $d = 0.23\cdot10^{-4}$. Полный цикл ритмов равен 1824.052 г. Начальная нулевая дата ритмов — 1700.0 г. В фазовом квадрате выделены только два «опасных» окна, к которым приурочены 13 из 14 событий. Эффективность прогноза I = 7.1. Текущая фазовая траектория (рис. 1 б) трижды пересекает «опасное» окно в интервалах апрель 2015 — февраль 2016 гг., февраль 2018 — декабрь 2018 гг., декабрь 2020 — октябрь 2021 гг. Затем наступает «пауза» длительностью более 27 лет, после которой события ожидаются в интервале январь 2049 — июнь 2049 гг. 8 «опасных» интервалах вероятность возникновения одного или более событий $p \approx 0.3$. Для «паузы» $p \approx 0.3$.

Прогноз глубоких курило-камчатских землетрясений. Для 10 глубоких землетрясений с $M \ge 7.4$ и глубиной более 300 км используются значимые ритмы 52.1164 г. и третья гармоника ритма 9.781 г., т.е. ритм 9.781 г./3 = 3.2603(3) г. Вероятности случайного распределения событий по фазе ритмов 52.1164 г. и 3.2603(3) г. соответственно равны $1.1 \cdot 10^{-3}$ и $1.2 \cdot 10^{-3}$. Формула резонанса имеет вид 52.1164 г. ≈ $16 \cdot 3.2603(3)$ г., $d = 0.94 \cdot 10^{-3}$. Начальная нулевая дата ритмов − 1700.0 г. Полный цикл резонанса равен 52.141 г. 9 из 10 событий приурочены к «опасным» окнам. I = 14.9. Текущая фазовая траектория (рис. 1 в) впервые пересекает «опасное» окно в интервале декабрь 2021 − май 2022 гг. Затем следует « пауза» длительностью 32 года, после которой события ожидаются в интервале июнь 2054 − январь 2055 гг. Для одного или более событий в «паузе» p = 0.26. Землетрясения на таких глубинах опасности для населения не представляют.

Прогноз сильных мировых землетрясений. Прогноз обсуждался в другом сообщении автора. Показано, что по двум парам ритмов I=11.3. В период 2013 — сентябрь 2060 г. «опасным» является только интервал октябрь 2015 г. — март 2017 г. Если использовать представительную статистику с 1900 г., то вероятность в этом интервале длительностью 1.5 г. событий с $M_w \geq 8.6$ составит 0.6. С апреля 2017 г. появляется «пауза» длительностью 43.5 г., в которой вероятность близких к представительным землетрясениям с $M_w \geq 8.8$ близка к 0.1.

Выводы

Полученные результаты приводят к выводу, что причиной возникновения землетрясений являются целочисленные резонансы, проявляющиеся в виде статистически значимого сейсмического отклика мировых и региональных землетрясений на астрономические и другие рассчитанные нами устойчивые ритмы. Можно предположить, что резонансным явлениям подвержены Земля в целом, ее геооболочки, тектонические плиты, субрегиональные и региональные структурные зоны.

Сопоставляя сделанные долгосрочные прогнозы, полученные на основе метода резонансов, можно отметить, что одновременно для всех четырех рассматривавшихся сейсмоактивных зон, включая Землю в целом, в период ноябрь 2021 г. – ноябрь 2048 г. наблюдается 27-летняя

сейсмическая «пауза», в которой сильные события маловероятны. Это связывается с выраженной синхронностью общепланетарных и региональных сейсмотектонических процессов.

Согласно прогнозу для Камчатки выявлена 37-летняя сейсмическая «пауза» для периода октябрь 2012 г. — ноябрь 2049 г. Ранее в двух аналогичных 37-летних «паузах» землетрясения с $M_w \ge 7.0$ и сотрясения в краевом центре силой более 5 баллов не отмечались. Если все-таки допустить, что с 1841 г. хотя бы одно событие с $M_w \ge 7.6$ в «паузах» наблюдалось, расчеты показывают, что в указанном интервале на расстояниях до 200 км от г. Петропавловска-Камчатского вероятность возникновения землетрясений с $M_w \ge 7.7 \pm 0.1$ не превышает 0.2. Но лишь 2 из 9 (2/9 = 0.22) событий приводили к сотрясениям в краевом центре силой 8 и более баллов по шкале MSK-64 на средних грунтах. Поэтому для таких сотрясений вероятность $p = 0.2 \cdot 0.22 = 0.04$, т.е. мала. Хотелось бы отметить, что если сейсмоукрепление краевого центра и окрестных населенных пунктов будет осуществлено для жилых зданий и других сооружений до расчетного сейсмического балла, то для жизни населения землетрясения серьезной опасности представлять не будут.

Автор выражает благодарность за конструктивную критику, замечания и полезные советы при выполнении работ по тематике прогноза членам Камчатского филиала Российского экспертного совета по прогнозированию землетрясений и оценке сейсмической опасности и риска А.А. Гусеву, Ю.К. Серафимовой и председателю КФ РЭС В.Н. Чеброву. Выражаю также благодарность Н.В. Широковой за многолетнюю помощь при проведении исследований.

Список литературы

- 1. Большев М.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1965. 464 с.
- 2. Бялко А.В. Наша планета Земля. Библиотечка Квант. Вып. 29. М.:Наука, 1989. 240 с.
- 3. Годзиковская А.А. Каталог макросейсмических описаний землетрясений камчатского региона за доинструментальный период наблюдений (XVIII-XIX вв.). Обнинск: ГС РАН, 2009. 128 с.
- 4. Гусев А.А. Прогноз землетрясений по статистике сейсмичности // Сейсмичность, сейсмический прогноз, свойства верхней мантии и их связь с вулканизмом на Камчатке. Новосибирск: Наука, 1974. С. 109-119.
- 5. Гусев А.А. О реальности 56-летнего цикла и повышенной вероятности сильных землетрясений в Петропавловске-Камчатском в 2008-2011 гг. согласно лунной цикличности // Вулканология и сейсмология. 2008. №5. С. 55-65.
- 6. Гусев А.А., Петухин А.Г. О возможной синхронизации сильных землетрясений лунным 18.6-летним циклом его долями и кратными // Вулканология и сейсмология. 1997. № 3. С. 64-79.
- 7. Ким Чун Ун, Андреева М.Ю. Каталог землетрясений Курило-Камчатского региона (1737-2005 гг.). Препринт. Южно-Сахалинск: ИМГиГ ДВО РАН, 2009. 126 с.
- 8. Ламакин В.В. О периодичности байкальских землетрясений // ДАН СССР. 1966. Т. 130. № 2. С. 210-213.
- 9. Прибылова Н.Е. Аргументы против отнесения эпицентра землетрясения 6 сентября 1866 г. к району г. Петропавловска-Камчатского // Материалы международного симпозиума «Проблемные вопросы островной и прибрежной сейсмологии (ОПС- 2005)». Южно-Сахалинск. 2005. С. 105.
- 10. Прибылова Н.Е., Бесстрашнов В.М., Годзиковская А.А. Принадлежит ли очаг землетрясения 23.11.1899 г. Камчатской сейсмоактивной зоне // Вулканология и сейсмология. 2006. № 2. С. 46-54.
- 11. Серафимова Ю.К., Широков В.А. Прогнозирование сильных землетрясений, вулканических извержений и цунами для различных регионов Земли на основе изучения их связи с лунным приливом 18.6 г. и 22-летним Хейловским циклом солнечной активности // Сейсмологические и геофизические исследования на Камчатке. К 50-летию детальных сейсмологических наблюдений / Под ред. Гордеева Е.И., Чеброва В.Н. Петропавловск-Камчатский: Холд. комп. «Новая книга», 2012. С. 305-328.
- 12. Широков В.А. Влияние космических факторов на геодинамическую обстановку и ее долгосрочный прогноз для северо-западной части Тихоокеанской тектонической зоны // Вулканизм и геодинамика. М.: Наука, 1977. С. 103-115
- 13. Широков В.А. Влияние 19-летнего лунного прилива на возникновение больших камчатских извержений и землетрясений и их долгосрочный прогноз // Геологические и геофизические данные о Большом трещинном Толбачинском извержении 1975-1976 гг. М.: Наука, 1978. С. 164-170.
- 14. Широков В.А. Опыт краткосрочного прогноза времени, места и силы камчатских землетрясений с магнитудой М=6-7.8 по комплексу сейсмологических данных // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. С. 95-116.
- 15. Широков В.А., Серафимова Ю.К. О связи 19-летнего лунного и 22-летнего солнечного циклов с сильными землетрясениями и долгосрочный сейсмический прогноз для северо-западной части Тихоокеанского пояса // Вестник КРАУНЦ. Науки о Земле. 2006. № 2. Выпуск № 8. С. 120-133.