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Principles
for analysis of scaling

(1) Analysis of scaling is a powerful approach in physics,
capable to clarify behavior of weakly accessible objects
or ones with less clear physics or incomprehensible

mathematics. (Examples: hydrodynamics, explosion,
turbulence)

(2) One have to select key dimensional parameters, and
study their interrelationships, often of power law kind

(3) A specific instrument is extraction of dimensionless
parameters
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Self-similar growth — similarity og stages of
growth; often — a good approximation
but its applicability need check in practical
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Key dimensional parameters

A. Geometry
Fault/source area D/2 Final slip/dislocation
—— p
| — Ty g W Real
/ | et— E—
r ) El D/2 > => = case;
l____a——-x_-wﬂ__.- x'lllv___.-"' - D=D(X,Y)
| L ~ |dealzed L Idealized
Case, :
case:
IV length L, Ww|@ = = => L, W
) > o
| | width W final slip D
Area: S=L-We [

Potency or dislocation moment: DS=DLW o< 3

Seismic moment:

Effective fault radius

M, = uDS=uDLW o< 3
R=(S/n)°5
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Key dimensional parameters
B. Kinematics

Rupture propagation history

Real case
’ tfmui‘:tfront(x’y ]
‘ | (isochrones)

l_ Idealized

case.
t_ﬂ'ant:vmp X

rupture duration T:
1=v,, L

VI=
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Key dimensional parameters
B. Local slip/dislocation formation

EQ Source/Fault model of Haskell 1964, 1966 (@t certain. fixed

D()t deterministic
rupture fr({:t L Dyt VVVVVVVVVVVVVVVVVVVVVVVV
healmg Y
front~§ g N 0
5 Y NOT RUPTURED
W| Have § rupt NOT SLIPPED D() ¢ Haskell 1966 -
SLIPPED & Dyt /
0
D(x) I !
D (at a certain fixed t) D()4 MM D) => M1
vl M VORI
0 29 or A D) => M(9)
M(0) => i(t)=v(?)
T=LN,,, b= TU/L) =/, WJV i
B L Day=> M0
Heaton's(1990) parameter: C,=1/L=t /T J_Wﬂ? ty=att)
C,=1/20 - 1/5, typically 1/10 ,
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Slip pulse width: I\

Local slip formation

time: T.. =T

rise r

Local slip velocity

=D/T,,

shp rise



List of dimensionless or effectively dimensionless parameters

Strain drop

Stress drop
Stress drop
Aspect ratio

Mach number
cs=p: S wave velocity

and their typical values
for natural tectonic earthquakes

(average values over fault area)
[dropped coefficients on the order of 1]

Ae = D/W 104-10-°

Ao =uD/W  0.5-5 MPa [5-50 bar]
do=My/R  0.5-5 MPa [5-50 bar]
AR=L/W 1.5-3.5.....20
Mach=v, /cs; 0.5-0.9global [up to 1.3 local]
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List of dimensionless or effectively dimensionless parameters
and their typical values for natural tectonic earthquakes (2)

Relative width of slip pulse Cy=1I/L 0.1
(=relative local rise time Trise/T)

Local/dynamic stress drop ubDAl 30MPa [300 bar]
Local slip rate D/T,;se 100 cm/s
Apparent stress drop UE icmic/M, 0.5-5 MPa [5-50bar]

——————————————————————— less usual parameters -------------=-=---ococoooeeo-
Coefficient of variation (D%3(-)/E(+))

of local stress drop field CV(D(x,y)) 1.0
Number of “asperities” N, 3

Slip maps D(x,y) obtained using various assumed wavenumber spectra,
with various degrees of expression of “asperities”; the preferred case:
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scaling / similarity: Ao

Similarity with respect to strain of stress drop (4c) can be seen in data as empirical
trends that follow predictions of dimensional analysis; or as scale-independence of
empirical estimates of Ao

In case of similarity Ac must be constant

[Conceptually, Ao =const might follow from the assumption of scale independence of
ultimate strength (or, merely, strength) of Earth material. However, the concept of
ultimate strength is not quite clear in itself and to a large degree outdated.

Alternative concepts, like scale-dependent fracture toughness, have been tested, but
no final consensus attained.]

Observed systematic stress drop/strain drop variations:
(1) Depth dependence (the deeper, the stronger)
(2) Distance from main plate boundary (the farther, the stronger)

(3) Return period of rupture on a particular fault segment (the rarer, the
stronger)

Magnitude dependence of Ao is a matter of acute controversy:
1st team: Ao =const at any M
2nd team: Ao =grows with magnitude from M=1 to M=5-6;

and stable at M=6+

Consensus not seen
Moscow 2015

10



scaling / similarity: Mach

Similarity with respect to Mach=v,,/c5 =L/T:
In case of similarity Mach must be constant

no significant deviation of fault-average (“global”) Mach from
typical values Mach=0.7£0.2 was noticed.

However, very significant /ocal variations of Mach,
with many examples of “supershear” rupture with Mach>1
over large sections of entire fault, has been discovered,
mostly in the last 15 years.

Moscow 2015
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Some scaling or, really, similarity: AR

Similarity/scaling with respect to AR=L/W :

(1) Two classes of sources with different trends:

- “short” faults with AR=1-4, mostly dip-slip ones (“s”)
Examples: Tohoku 2011 (subduction), Northrige 1994 (crustal),

- “long” faults with AR>4, up to 20; mostly crustal strike-slip

ones.(l")
Examples: San-Francisco 1906 (crustal), Sumatra 2004 (subduction)

(2) Within each class, clear magnitude dependence:

Low AR=1-1.5 for M=4-5; increase to big values like 3-4 for “s” class and
like 20 for “I” class

Moscow 2015 12



scaling / similarity: AR (2)
============= Probable explanation for magnitude dependence: ============

The larger is magnitude, the larger is fault area and the more are chances that it will be
elongated to fit in the brittle zone of limited width.

=============Pr0bab/e eXplanat[on Of2 ClasseS e e e = e e e E P
External non-uniformity spoils scaling. Division into classes is created by various brittle
zone size along rupture propagation direction ( vrup vector).
Crustal event case, brittle zone width 10-20 km, defines max W;

dip-slip: L is limited /segmentation; AR around 1-3
strike-slip: L is not limited, AR up to 20

Subduction event case mostly dip-slip , brittle zone width 50-200 km, defines max W

L is not limited, W is limited by 50-200; AR rarely above 4, sometimes up to 10-15
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Probable case of lack of similarity in scaling : C,, = I/L

Similarity/scaling with respect to relative width of slip pulse (=relative local rise
time).

Cp=UL=T, /T

In case of similarity C,, must be constant

Weakly studied field. For [, very limited amount of direct measurements.
To a large degree, C, reproduces the £ parameter — the degree of “partial stress
drop” - proposed by Brune (1970)

Gusev 2013 proposed that one can estimate T, from the second corner
frequency as seen on the source spectrum; this point to be described in detail

further.

If this works, empirical data suggest that C,, is clearly non-constant; similarity
breaks:

T

rise

seems to scale approximately as T°° ; and therefore C,, as 7% or M,/

Moscow 2015 14



Supporting evidence
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Supporting evidence
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YACTb 2: CINEKTPbI

NMooobue n CKeUNUHr oA XxapakTepHoOU 4YacToThbl
Scaling and similarity for characteristic frequency

Frequency (Hz)

SO0 ‘h""'-u. -_-_‘?'-! o=
- Cais
ALY T |Monkeys
Small b Gorillas
1000 Birds M“H.,_ Horses
oo Lame[™
s Humans
200 Dogs
100
S0
Elephant=
5 -
Ll 0.1 | 10 LT ILELE AR LY

Animel mass (kg)

-1 “
ffundNL Fig.19.1 1'[I|: frequency ranges of the emphasized fre-
~ MASS-‘]/S quencies of vocalization in a large range of land-dwelling
anmimals, plotted as a function of the mass of the animal.
regression f o M~ while

I_IO,D,O6|/|e ffund~ n f oc M-, as discussed in

Similarity MASS-04

CKeWInuHr ecTb;
HO noao6ue HapyLueHo
Scaling is present; no similarity
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177

@2 “ or “omega-square” spectral model
of far-field earthquake source radiation,

after Aki 1967 and Brune 1970: scaling with similarity

([Brune 1970] in the standard version of e=1)

el T _o f
lglac f) Rz
U Y/ X A
/N
/ \
~r/ I \
a(f)=ii(f) / e \ :
a(f)=FS4 // fc \\Nf
u(f)=FSD |/ \
lg f
Features:
1. u(f=0)< M,

2. Single corner at f=1/T

3. w?or f2 HF branch of u(f); thus, flat a(f) spectrum
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far-field
displacement u(f)
spectrum
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DISPLACEMENT SPECTRAL DENSITY (SCALE EFFECT ONLY )
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Scaling Law of Seismic
Spectrum (Aki 1967)

The family of
far-field
displacement
spectra
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Assuming similarity
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Brune 1970 version of “omega-square” spectral model and its
later practical implementation

fault description deterministic, not stochastic after Aki 1967

explicit formulas relate M,

f, Acand R

1 Tos

in case of more complicated spectral shapes:
(1) “empirical-asymptotic” HF branch is permitted to have slope in the

1.0-2.5 range; and / or

(2) complications around the corner are ignored, and “intersection of
asymptotes” is taken as the corner frequency

‘0 0 IOO IDDO 1000.0

W% \ ~10°

1072

e
o
. s
&%
"t e

o8

a\ 1074

This picture from Savage 1972 was not a recommendation, only
statement of a problem. However, many spectral studies
actually used it in this way, taking “w,” as the empirical corner
position

This is the probable reason why spectral and inversion
estimates of Ds often do not match (typically 30 bar against 5-15
bar)
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On the nature of spectral corners in deterministic source models.
Why stochastic fault model is a must?

u(t)
a) _hx w!

b) —7 A S
—— \

c) ﬂ w3

l

I

|

}
10

Fig. 4. The relation between the pulse form
and the asymptotic behavior of its spectrum
[after Bracewell, 1965). Curves a, b, and ¢ exhibit
discontinuities at £ = ¢ in the displacement u,
velocity du/dt, and acceleration d®u/dt? respec-
tively,

This picture from Savage 1972 illustrates
how discontinuities in the displacement
waveform, (or source time function, STF) are
related to emergence of spectral corners.

The preferred waveform b with angular point
and thus with “@2” spectrum, after passing
to acceleration, produces delta-like
acceleration spike (red trace, my), nothing
common with realistic noise-like
accelerogram.

The standard textbook STF of trapezoidal
shape produces precisely four spikes.
Therefore, deterministic models give no
hope in creating realistic broadband source
model. Stochastic models can help.
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First attempts for more realistic spectral families:
strict similarity is rejected

Key feature of the
new generation of

Lg My (F) (Fun cm) 1030

1023 g
= spectral models is
s 10° the lack of
» T e » fc1 similarity that was
o | needed to
5, 810% describe real
e earthquke data
E -
2
(3] |024“' -
E | Revised (1978-1981)
S 10°°lf / spectra remind
022 Aki1967 spectra at
2 z 20le.ec ] =5J
L 07 By And show two-corner
-2 -1 0 AW o e
cdbakioi or even two-hump
(C'yces 1979) (Takemura&Koyama1982) shape at M=8

(Gusev 1979)
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More advanced spectral families with no similarity

logf* M. (1), (GUSGV 1983) f02

dyne tm-st

%6 1

731

|
'E'Ei- -

-3 2 -1 0 1 log f Hz

Figure 3. A set of average spectra of value f‘.'fvfn (= (lw)"ﬁﬂ (f) for log My = 23-30. Continuous lines:
spectra as observed at the Earth's surface, broken line: reduced to the source, Points: spectral level at
corner frequency according to the model M, (f) =M, [1 + (r';-"fo)T] !, Circles: spectral level derived from
My (M) curve.

(Papageorgiou&Aki 1983,1985) PAGEOPH,

10%

1028 Ej-
o
# 2 ot
= =
=] -
< -
s
0B
IRrd =
% 5
i
1022 T"I‘
102' 7 "'illl'll!. a "I UIIIC! 1 L] lllli—i-J'_ E] 1] lll'i!I! H . 4l!!.l!
1073 1072 10° 10! 102

107
FREQUENCY (HZ)

Figure 4
acceleration source spectra we constructed using the observed parameters of the specific barrier
model (intermittent line), is compared with Trifunac’s (1976) empirical spectra.

Shown are “acceleration source” spectra, those reflecting acceleration source time function.
Decay of these spectra at HF part are related to the assumption of “source-controlled f-max” .
Its role was greatly overestimated at that moment; still it can often be recovered from data,

and this assumption reflects reality.
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Empirical spectral scaling laws with flat
accelerogram spectra
approximating source acceleration shapes
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Q \\\\\\
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Fourier Accelemtion Soume Spactm (dyne cm's)

Recommended spectral scaling laws
(Halldorsson&Papageorgiou 2005)

M55

M75 3

18] 10 10
Fraquancy (HZ)
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/, is definitively present

but it 1s correct to assume it
to scale as f. 777
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Work version of Gusev 2007 (unpublished)

Scaling of "acceleration source spectrum"”

log M f1M,)

8.63

24
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23
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log, (fB, Hz)

Iog1 O(fB, Hz)
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g fe2

Kamchatka data (Gusev,Guseva 2014).
f.,(M): digf,,/digMs=-1/3

common, regular trend;in agreement with the similarity concept
cKelriuHe 8 coanacuu ¢ udeel rnodobusi

Ig fc1(P) vs ML; ref slope 1/3 Ig Mo
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lg fc2

f.o(M): digf,/digM,~ 0.15-0.18 [+0.011] « 1/3

rnodobue si8HO HapyweHo Ssimilarity is broken

Ig fc2(P) vs ML ref slope 1/6 Ig Mo
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f_o(M): digf_,/digM,=-0.08+0.013

nodobue 2pyb6o HapyweHOo similarity is broken blatantly

log-fe3
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All three trends side by side (S-wave)

Mdat: 415 Mdat: 434 Mdst: 431
20 - - 20
10t 10
5% 5
o 4% T 3
= = 2
o ot
1t = 1
0.5} 0.5 0.5
0.3t 0.3 0.3
0.2 : : 0.2 : : 0.2 : :
4 g 6 4 g 6 4 g G
srat=2 ML srat=2 ML ; ML ;
digfc/dighto=-0.220 +- 0.018 [-0.220 orth] digfcidighto=0.150 +i- 0.011  [-0.179 orth] dligfedidighte=-0.072 +- 0.0M1
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Figure 1. The regression of eye mass on body mass for 104

species of flying birds, each from a different family.

»=0.682x—1.379, r* =0.846 and p=<0.0001. Slope of reduced
major axis regression=10.741. Although not included in the
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the fire ant Solenopsis invicta workers (A)

Although both polygyne and monogyne colonies
displayed positive allometry in head width above the
eyes, workers from large monogyne ants had a higher
growth rate (1.23, as opposed to 1.16 for small
monogyne and 1.17 for polygyne) in relation to the total
body size.
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Figure 1: Correlation between maximum lifespan
(tmax) and typical adult body mass (M) using all
species (n=1,701) present in AnAge build 8. Plotted
on a logarithmic scale.
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Figure 2. Brain weight as a function of body weight (from Jerison, 1973: see
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Principles
for analysis of scaling (2)

Generally, scaling analysis assumes that no intrinsic
dimensional (spatial, temporal, etc) scales exist within the
problem under study.

When a relevant dimensional parameter appears, scaling can
often identify it, then power law is violated and critical size
shows itself in a scaling diagram as an anomaly.

Spectral peak in a spectrum on the background of white noise or power-law behavior is a
standard example.
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