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S U M M A R Y
Spectra of high-frequency (HF) waves radiated by earthquake sources have specific features:
above the common corner frequency fc1 they manifest second corner frequency, fc2; and
beyond, a plateau in acceleration spectrum. To explain these features, convoluted, ‘lacy’
geometry of earthquake rupture front was recently proposed. In order to realize such geometry,
random space–time functions were used; this simple approach permitted to reproduce both
the mentioned spectral properties. However, the random structure of the front was introduced
in that earlier study in an a priori manner. Presently, stochastic evolution of a rupture is
described in a less formal way, employing a continuous-time cellular model. Each cell of a
model geological fault is occupied by an automaton, with three possible states: intact, failing,
or broken. A failing cell can ‘ignite’, after certain delay time �t, failures in neighbour cells.
Local values of �t are fixed in advance and represent a realization of self-similar random
2-D field. A local �t value is believed to reflect local resistance to failure: the stronger a
cell is, the larger is its �t. Through a succession of local failures, a convoluted or even
multiply connected rupture front is formed. Viewed at low resolution, such front occupies
a certain strip of finite width. Numerically, this width can be described through the rms
width parameter, w. As was shown in earlier simulations, there exists a close relationship
between w and fc2: fc2∝1/w. Using this relationship one can verify a stochastic fault model
through comparison of the predicted scaling behaviour of fc2 against the observed one. For the
relationships of the kind logfck = –βk log M0 + const, observations give values of β2 in the
range 0.16–0.27, against β1 ≈ 1/3 for the common corner frequency, fc1. Thus, the behavior
of fc1 agrees with the similarity assumption, whereas that of fc2 does not. Through comparison
of calculated estimates for β2 and for rupture velocity with their observed values, realistic
ranges of parameters of the developed model were obtained. With appropriate parameter ranges
selected, the current model successively reproduces both the observed range of β2 and the
observed range of average earthquake rupture velocity, (0.5–0.8)cS. When a simulated rupture
front history is combined with a plausible 2-D field of local stress drop, broad-band time
histories can be generated, with verisimilar spectra. These have two corner frequencies and
a plateau in acceleration source spectrum. It was found that permissible variation of model
parameters can significantly modify, at given M0 and stress drop, the relative levels of HF
radiation from a source; this may give better insight into causes of variability of strong motion
amplitudes.

Key words: Numerical modelling; Earthquake dynamics; Earthquake source observations;
Statistical seismology; Dynamics and mechanics of faulting.

1 . I N T RO D U C T I O N

The property of incoherence of high-frequency (HF) radiation
from an earthquake source has been noted by Kostrov (1975).
Boore & Joyner (1978) and Israel & Nur (1979) saw the cause of

incoherence in two random fields over the fault area: first, of ran-
dom final slip, and, second, of random local/instant rupture velocity.
Joyner (1991) noticed that within such a model, one should observe
the specific variation of body wave pulse shapes and their spectra at
different angular positions on focal sphere: pulses are compressed
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or expanded with preserved overall shape, and their spectra, accord-
ingly, are expanded or compressed. At realistic rupture velocities,
vr, comparable to shear wave velocity, cS, this would result in ex-
pressed angular dependence of acceleration amplitudes: ‘forward’
radiation, that is along rupture propagation direction, must be much
more powerful than ‘backward’ radiation. Whereas such directivity
does exist for velocity (or displacement) amplitudes, it is almost in-
conspicuous for acceleration amplitudes or macroseismic intensity.
Thus, the initial idea—to associate incoherence directly with ran-
dom slip or random local rupture velocity—did not work. Negligible
directivity of HF strong motion amplitudes with respect to rupture
direction was a standard view of engineering seismology prior to
the beginning of 1990s, both for velocities and accelerations. After
observation of expressed directivity of peak velocity in records of
Landers 1992 earthquake, ‘forward directivity’ became a standard
concept in modern engineering seismology (Somerville et al. 1997;
and later work). However, with respect to peak accelerations no
directivity corrections were found necessary. In spectral domain,
clear dependence of directivity on the considered frequency range
was discussed by Bernard & Herrero (1994).

The simplest way to explain radiation incoherence is to distribute
over the fault surface many independent point subsources of dislo-
cation kind or to cover this surface with random radiating patches;
the key property is statistically independent random time histories of
subsources (Hanks 1979; Gusev 1983; Koyama & Shimada 1985).
For a particular frequency band �f, this independence is equivalent
to random phase shifts between patch contributions at a receiver.
As a result, radiation from patches is combined at the receiver in
terms of energy, not amplitude, and angular directivity is greatly
reduced. In these studies, the question of rupture kinematics was
ignored. As a next step, Gusev & Pavlov (1991) introduced space–
time (HF luminosity), that is time-dependent energy flux from unit
fault element, within the frequency band �f. Making a fault patch to
radiate energy, not amplitude, results in incoherence automatically.
Whereas such an approach works well for synthesizing scenario
earthquake time functions (Gusev & Pavlov 2009; Gusev 2011), it,
being phenomenological, sheds no light onto the physical origins of
incoherency.

In this context the note of Boore & Joyner (1978) should be
mentioned, that to form incoherence, non-monotonous growth of
rupture front in space–time might be relevant. Day et al. (2008)
further developed this idea. To implement it in sufficient detail is
the main intention of this paper. This is far from trivial, as tra-
ditionally an earthquake source is treated as a brittle shear crack
with smooth front geometry. In uniform elastic medium, after nu-
cleation, dynamically growing crack accelerates and, in the realistic
case of planar crack, approaches some limiting velocity close to (or
even in excess of) shear wave velocity cS. Despite the existence of
limiting velocity, local variations of rupture velocity, and related
disturbances of the shape of rupture front can be expected, caused,
for example, by local variations of fracture energy.

Perrin & Rice (1994) performed a linearized perturbation analysis
of propagation of planar crack (with initially straight front, and with
uniform velocity) after entering into a zone of non-uniform fracture
energy in the crack plane. They found that ‘the front of a crack
that can run forever in a random unbounded medium grows over-
whelmingly wavy’. Perturbed behaviour is predicted also for front
velocity. Although these results were developed for Mode I crack,
generalization of their qualitative aspects to shear cracks seems per-
missible. Also, Fineberg & Marder (1999) note that fracture energy
depends on front velocity and that inverse statement is also true.
These results support the accepted concept of randomly varying

local rupture velocity depending on variable resistance to crack tip
propagation.

The analytical approach, being accurate, does not permit to fol-
low up the developed stages of random rupture. Convoluted space–
time geometry of rupture front was proposed qualitatively in Gusev
(2013) and was then illustrated by kinematic simulation in Gu-
sev (2014; further abbreviated to G14). Gusev (2013) looked for a
model that would explain low HF directivity, and assumed that real
earthquake rupture has ‘lacy’ geometry and, in general, represents
a multiply connected fractal line (polyline).

To clarify the point let us introduce a convenient analogy of an
instant rupture front in the form of a coastline of a land mass grad-
ually flooded by raising sea level. Assume the land ground to be
permeable for sea water, so the surface of any lake is at sea level.
Increasing the degree of irregularity of land relief, various kinds of
coastline can be formed: from simple continuous beach to tortuous
cape-and-bay forms, to, finally, multiply connected coasts (‘sker-
ries’). In the last case, islands, left in the rear, correspond to high-
strength/low stress unbroken patches of a fault, whereas isolated
lakes appear landward from the main coast, representing distantly
excited fault patches. Generally, such a complex front occupies a
strip of finite width, further called ‘front strip’. The simplest case of
an even beach corresponds to the common concept of smooth shape
of rupture front. Lake-like features of rupture growth were found
in theoretical modelling (Day 1982) and in real earthquakes. For
instance, Archuleta (1984) and Spudich & Cranswick (1984), using
different input data sets, revealed a real jump of rupture front when
performing inversion of near-source records of Imperial Valley 1979
earthquake. As for island-like features, I know no direct evidence
regarding them, but they must be common in the form of immedi-
ate or short-delayed aftershocks; these are not well observable but
highly probable.

Based on this ‘geographical’ analogy, in G14 a simple model of
geometry of a ‘lacy rupture front’ was proposed. Initial step of its
construction is a regular smooth line moving in space–time, which
described evolution of the average front. This space–time construct
was then perturbed by adding extra delay at each point. This pertur-
bation was conceived, and then simulated, as random self-similar
field with certain rms amplitude. Through controlling the perturba-
tion amplitude, all described coastline variants could be reproduced,
from smooth to convoluted single-connected to multiply connected,
evidently fractal. Simultaneously, the width of front strip, w, de-
fined through rms deviation of the front from its unperturbed shape
increased, following the increase of perturbation amplitude. Ran-
dom front geometry was combined with random field of local stress
drop. With these two independent and interacting random compo-
nents combined, this model was labelled ‘doubly stochastic source
model’ or DSSM. This model permitted to reproduce successfully
the three key qualitative properties of the high-frequency (HF) earth-
quake radiation: flat acceleration source spectrum, distinct second
corner frequency at f = fc2, and the diminution of directivity at HF.

A significant property of the G14 model was the linear relation-
ship between w−1 and fc2. This concept departed from the notion of
‘slip patch’ (Boatwright 1988), or a free-slipping patch on the fault
adjacent to a failed fault element. Over this patch, the fault-guided
waves, mostly Rayleigh waves, can propagate, and the distance of
their propagation defines the duration of elementary displacement
pulse radiated as body wave by a fault element, in a certain gen-
eralization of Das & Kostrov (1986). Two assumptions were made
in G14: first, that the mentioned propagation distance is defined by
the front width wfr (with its value on the order of 3 w), and that the
duration of the mentioned wave pulse, proportional to wfr, defines
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the value of fc2. The approach of G14 will be substantially used in
the following, in particular for numerical estimates. Still, the suc-
cess of this approach was only limited as ‘lacy’ fronts arose within
it in an a priori manner. Of evident interest are physical processes
that may form the lace-like geometry.

It should be mentioned that notwithstanding the fact that the
close connection between w and fc2 claimed in G14 is in essence a
plausible hypothesis, this hypothesis finds a quite good support in
otherwise enigmatic anomalous scaling of fc2. This anomaly is evi-
dent when one compares scaling of the common corner frequency,
fc1, and of fc2. Both mainly follow the rule of the kind fck ∝ M−βk

0 ;
however β1 and β2 differ. Whereas for fc1, β1 ≈ 1/3, as could be
expected from the assumption of similarity of earthquake ruptures,
the increase of fc2 with magnitude is much slower (Gusev 1983);
observations give values of β2 in the range 0.16–0.27 (see Gusev
2013, for a review; for fresh well-established results see Archuleta
& Ji 2016 and DeNolle & Shearer 2016). This phenomenon was
qualitatively explained in Gusev & Guseva (2016) by the analogy
with well-known scaling of front width in random growth phenom-
ena. Denote source length as L; then the front propagation distance
R is (0.5–1)L. In the simplest, 1-D, case, evolution of front width is
described by the classical theory of ‘random walk with drift’ (Feller
1957) which predicts simply w ∝ R0.5; thus β2 = 1/6. The 2-D case
is more complicated, still the values of β2 significantly below 1/3
can be expected.

Generally, I know no solid explanation both for formation of fc2

and for plateau in acceleration spectrum at frequencies above fc2.
Modem textbooks (Shearer 1999; Stein & Wysession 2003) relate
fc1 and fc2 to durations of two box-car time functions describing,
one, propagation of dislocation at a constant speed, and another,
time history of dislocation growth at a point. The plateau in an ac-
celeration spectrum (i.e. the ω −2 type of displacement spectrum) is
then formed through convolution of the two boxcars, each with ω −1

HF asymptotes, and, conceptually, this is reasonable. When taken
at the face value however, such a model is unsatisfactory, predict-
ing unrealistic acceleration time histories consisting of only four
delta-like singularities. One can try to smooth such time history,
but this will immediately destroy the target asymptotic behaviour
of ω −2 type. Dynamic models of a crack, either brittle (Madariaga
1977) or with cohesive zone (Kaneko & Shearer 2014) provide more
consistent explanation. The cases of crack-like and slip-pulse–like
propagation were recently analysed in more detail by Wang & Day
(2017). However, in all these models, slip terminates abruptly or
nearly abruptly along the crack border, whereas seismogeological
data (Scholtz & Lawler 2004; Manighetti et al. 2005; Wilkins &
Schultz 2005) as well as most slip inversions collected in SRC-
MOD (Mai & Thingbaijam 2014) suggest smooth termination of
slip function along periphery of a real earthquake fault. Including
this feature into the crack model would again add supplementary
smoothing of source time functions, undesirable when one pursues
explanation of ω −2. To put this other way, the HF behaviour of
source spectra seem to be formed rather during perturbed propaga-
tion of rupture, caused by fault heterogeneity (Madariaga 1977) and
not at its stopping; corresponding ‘stopping phases’ are practically
not discernible at HF.

There are two main approaches to description of this fault
heterogeneity: either through individual features—barriers and
asperities—or, more adequate for our aims, through a random field.
Andrews (1980) proposed to treat fault heterogeneity as random
self-affine (generalized self-similar) random field, that is one with
power-law mean power spectrum S(k)∝k−2δ . where k = (kx

2 + ky
2)0.5

is the length of wavenumber vector. If S(k) describes stress drop,

and δ = 1, then the stress drop field is self-similar (narrow sense);
at other values of δ it is self-affine. At δ = 0 the field is 2-D white
noise, that is uncorrelated. Andrews’ guess regarding self-similar
stress drop field was confirmed to a large degree by the study of
inverted slip distributions (Tsai 1997; Somerville et al. 1999; Mai &
Beroza 2002). Boatwright & Quin (1986) incorporated this concept
into elastodynamic rupture simulation; they assumed power law 2-D
spectra both for initial stress and for strength. They found important
features of such models like sub and super-sonic local rupture ve-
locities, and irregular rupture fronts. This line of study was further
developed for more complicated models (see e.g. Dunham et al.
2011). Also, computationally faster techniques of pseudo-dynamic
simulations of heterogeneous ruptures has been developed (Guat-
tieri et al. 2004; Song et al. 2014; Crempien & Archuleta 2015).
Unfortunately, the problem of high-frequency directivity are not
discussed in these papers. As regards relationship between random
fault and random radiation, Herrero & Bernard (1994) noted that a
jump-like dislocation sweeping a fault with self-similar stress drop
field produces ω−2 spectrum, a highly instructive property.

An important point is whether functions, which represent slip,
stress, etc. over a fault, should be assumed to contain energy at
all scales, or some characteristic length, and specifically lowermost
intrinsic scale of the fault, should be introduced, larger than the
spatial step prescribed within a numerical simulation. In their in-
structive paper, Ben-Zion & Rice (1993) introduced a consistent
model of quasistatic rupture in elastic body, with numerical cell
size much smaller than that of possible physical cell size (‘segmen-
tation length’ or ‘coherent slip patch size’). Similarly, Madariaga
& Olsen (2002) speak of a ‘minimum slip patch’. In mechanics,
this viewpoint was originated by Novozhilov (1969); also Morozov
& Petrov (2002) speak of ‘quantum nature of fracture dynamics’.
Observations, which suggested a characteristic small size of seis-
mically active crust, were presented by Chouet et al. (1978). They
worked with three data sets of small earthquakes from different lo-
cations, and, analysing their source spectra, found indication of a
well-expressed minimum source size of such an earthquake; this size
occurred to be specific for each of the three zones. A good indepen-
dent example of this kind was given in Sacks & Rydelek (1995) and
Rydelek & Sacks (1996; further both referred as SR95) who devel-
oped on this basis their concept of ‘earthquake quanta’ which form
a network of cells over fault area. For a particular earthquake fault;
there exists also the uppermost intrinsic scale, somewhat smaller
than earthquake size (Somerville at al. 1999; Mai & Beroza ); this
point, being important in general, is of low relevance here, and is
not accounted for while simulating random fields over a fault.

Another manifestation of finite size of fault inner structure was
perceived by Papageorgiou & Aki (1983) and Gusev (1983) in
the existence of the upper cut-off of source acceleration spectrum
of a large earthquake, commonly called ‘source-controlled fmax’
and denoted here for brevity as fc3, for ‘third corner frequency.’
Despite long controversy, its existence (despite masking effect of
‘site-controlled fmax’, at present often discussed in terms of κ0) is
supported by increasing amount of evidence; see review in Gusev
(2013). The typical range for fc3 is 4–15 Hz, with slow decrease with
magnitude, suggesting characteristic size of 100–300 m. Aki & Jin
(2000) call this parameter ‘inner fault scale’. Perrin & Rice (1994),
in essence, also introduce characteristic length of fault surface,
which corresponds to their characteristic distance between multiple
small asperities.

The model developed further has some properties common to the
approach of SR95. In their model, following Burridge & Knopoff
(1967), failure of a cell loads a neighbour cell, and may initiate its
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failure. Cells interact through elastic field; failure is ruled by dry
friction; cell strengths are random uncorrelated (white 2-D noise).
Slip of a failed cell is local, ruled by local stress. To permit slip at a
point of the fault to grow with fault size (and magnitude), a cell can
fail repeatedly if reloaded by stress redistribution caused by failures
of neighbour cells. Example rupture simulated in SR95 shows, on
a snapshot, a front-like feature, of relatively narrow width, which
consists of multiple failing cells. Still, no picture is given in SR95
of a front line (single or multiply connected); examples are given
only of instantly failing cell clusters but do not represent a distinct
boundary. Radiation formed by this model was not considered.

Another cellular model, particularly aimed at explaining HF radi-
ation, is one after Lomnitz-Adler & Lund (1992). They depart from
the notion of percolation. A sequence of failures propagates over a
grid of cells. Consider a particular unbroken cell A. If a cell breaks in
its neighbourhood, cell A can be ‘infected’, and break, with certain
probability P < 1, or alternatively can be converted into the barrier
state, with probability 1–p. In such a process, permanent lacy geo-
metrical structure (‘lacy cloth’) is formed, in difference with G14
where only short-lived ‘lace fringes’ appear. Over the completed
‘lacy cloth’, a constant-slip circular dislocation line propagates,
and HF radiation is formed when the intermittent random sequence
of active and barrier cells is crossed by the front. The model is in-
structive but doubtful, as it is in contradiction with seismogeology:
along a continuous fault (with no stepovers), the observed fault slip
never abruptly stops and appears again within a short distance.

To summarize, one can believe that an attempt to apply cellular
model for the description of formation of ‘a lace’ at rupture front
may be meaningful, and eventually may permit to simulate HF
radiation. Note that cellular models are conceptually very simple:
each cell is a simple automaton ruled by the same algorithm. A
complicated behaviour of a grid of automata, and of random fronts
in particular, can appear by supplying automata with non-identical
numerical parameters.

Last decades, formation of random fronts in various non-
stationary natural and engineering processes was widely discussed
and modelled, comprising a considerable research field (see e.g.
Halpin-Healy & Zhang 1995; Gouyet 1996; Bonamy 2009, for re-
views). These studies can provide useful analogies for rupture fronts
in an earthquake source. The following study objects can be listed,
among others:

(1) Single-connected fronts with random geometry: surface
growth; sedimentation; surface etching; imbibition of liquids into a
porous material, growth of bacterial colonies and of tumours;

(2) Multiply connected fronts: slow crack front propagation, non-
detonation explosion of a gas cloud (deflagration), solid propellant
burning in a rocket motor, evolution of a (real) forest fire.

The latter process provides most direct analogy to propagation
of earthquake rupture; it was often analysed using cellular models.
For a forest fire, formation of ‘islands’ (slowly burning or unburned
patches in the rear of the front) is common. Also jumps of front
forward (‘lakes’) are often formed, by brands blown downwind.

An important issue is testing the model against observations.
There are earthquake parameters that can be used for this aim. First,
it is the width of rupture front. The hypothesis of linear relationship
between 1/wfr and fc2 was already mentioned above. SR95 and
G14 associated rupture front width wfr of their models with slip
pulse width l of Heaton’s (1990) fault model. Still, this is far from
being certain that it is l that manifests itself in fc2, and not directly
wfr. At any rate, these views differ from those of Papageorgiou &
Aki (1983, 1985) and Aki & Jin (2000) who associate fc2 with the

second, larger inner fault scale, which they relate to the characteristic
between-barrier distance. A useful dimensionless parameter related
to wfr is the rate λ of its growth with earthquake size L. Assuming
plain similarity of earthquake sources, wfr must be proportional

to L: λL = d log w f r

d log L = − d log fc2
d log L = 1. For sets of observed spectra,

λL is significantly below unity (Gusev 1983), with typical d log fc2
d log L

in the range -(0.5–0.8). (Atkinson 1993; Gusev 2013; DeNolle &
Shearer 2016). Scaling of the kind

d log w f r

d log L < 1 is a good indicator of
random growth (Gusev & Guseva 2016). Another, more common,
parameter, which can be used for comparing real and simulated
ruptures, is average rupture velocity.

In the present work, a cellular model of formation of propagating
‘lacy fringe’ is developed that hopefully catches the physics of earth-
quake rupture formation better than a priori construction of G14,
though the model is again of the double-stochastic kind. A mecha-
nism for formation of random front will be discussed, and properties
of synthesized fronts will be compared to those of real faults. Gen-
erally, such comparison might yield some estimates of parameters
of the developed cellular model. However, the number of possible
significant parameters of the model is larger than the number of
observational constraints. This prevents constructing any complete
description. The goal of this study is mostly the demonstration of
a concept. Although the entire presented numerical analysis uses
some fixed guesses, I hope that at least the order-of-magnitude es-
timates of model parameter can be obtained.

The general organization of the paper is as follows: (1) descrip-
tion of algorithms and parameters comprising the cellular model;
(2) illustrations of properties of the cellular model by examples, ob-
serving how variations of numerical parameters affect the behaviour
of the model; (3) systematic scanning of parameter space and de-
termination of verisimilar intervals of parameters and (4) running
the procedure for synthesis of (uncalibrated) accelerograms, with
front kinematics simulated by means of the cellular model. The
front history obtained in this way is combined with the random
field of local stress drop, like in G14. In this manner, waveforms
and their spectra are obtained. These spectra indeed manifest the
above-described characteristic features, of second corner frequency
and of acceleration spectrum plateau. Also, the finiteness of cell
size results in formation of fc3.

2 . A K I N E M AT I C C E L LU L A R M O D E L
O F E V O LU T I O N O F E A RT H Q UA K E
RU P T U R E

2.1. The background of the suggested model and
requirements it should fulfil

The classical dynamic model of an earthquake source rupture is a
shear crack in brittle elastic body, which propagates spontaneously
under the effect of shear stress. In difference with the general case,
fault-crack is channelized and mostly follows a certain weak plane
defined by a geological fault. The crack tip plays the role of rupture
front. The following properties of crack formation are especially
important.

(1) Crack tip propagates spontaneously when the critical (Grif-
fith’s) size of a crack is exceeded. See theoretical results reviewed
for this case in Rice (1980) whom I mostly follow. After initial
acceleration, asymptotic velocity of a model crack is cS for Mode
III and vR ≈ 0.9cS for Mode II. Also, the theory (Andrews 1976
and later work) describes the possibility of propagation of Mode
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928 Gusev

Figure 1. (a) A cartoon showing a cell and its neighbours. Filled arrows
are from cells, which tried to initiate the I→F event in the current cell (to
‘ignite’ it). In any of neighbour cells, this attempt occurs at the moment of
F→B event in this neighbour cell. Among these, the successful is one with
the earliest time of its F→B event. Empty arrows are from other cells, which
also can ignite the current one, but only potentially. (b) A sketch illustrating
definition of rms front width, w. Positive and negative individual deflections
of the actual front line (corrugated brown) from the ideal, no-resistance
front line (blue arc) are depicted as solid or dashed arrows. Deflections are
measured along local normal to unperturbed front. To find w, root mean
square deviation of deflections is calculated; the ± w strip is schematically
shown. The assumed actual front width is wfr = 2.5 w.

II crack at velocities above cS. In this mode, separate (‘lake-like’
in terms of Introduction) secondary cracks with high ‘intersonic’
(cP > vr > cS) velocities nucleate under the effect of the dynamic
stress field formed by running ‘subsonic’ (vr < cS) rupture. In
agreement with the theory, average velocities of rupture propaga-
tion observed in earthquakes are usually in the range (0.5–0.9)cS,
and cases are systematically found when local velocity exceeds cS.

(2) Local random variations of resistance to fracture propagation
can be expected. These variations can reflect: non-uniform material
parameters, like fracture energy; wavy profile of fault walls and of
entire fault; fault bifurcations or small kinks, etc. Such variations
of resistance cause deviations of local rupture front velocity from a
constant. As a result, the front shape is distorted, and rupture velocity
varies. To formally describe distortions of front shape, one can
introduce the notion of rms width w of the front, defined as standard
deviation of actual instant front position from its unperturbed or
mean position, with deviations measured across the unperturbed
front (Fig. 1). See Introduction for short presentation of the work of
Perrin & Rice (1994), who accurately treated the linearized case of
small perturbations of resistance.

(3) Front of a crack has no inertia (Madariaga 1977; Rice 1980,
eq. 5.39 and further) and is therefore capable to bend sharply around
obstacles.

Justification for introducing a cellular model of rupture front is
given in Introduction. Such a model should reproduce the listed
properties whenever possible; but some simplifications will be
made. In particular, the difference between velocity limits for Modes
III and II is neglected, and a fixed isotropic upper bound is set for

front velocity, assumed equal to cS. The possibility of larger veloc-
ities is ignored. In the present simulation, rupture velocities vr are
normalized to the upper limit, cS, giving normalized velocity, or (S-)
Mach number m = vr/cS, always below unity here. In the following,
m will be called velocity for brevity. The key check for the devel-
oped model is its capability to reproduce properties of fronts of real
earthquake ruptures. In particular, as mentioned in Introduction, I
try to reproduce scaling of rms width w with earthquake size, and
rupture velocity. Also, it is interesting to check the capability to
reproduce the HF features of real sources already emulated in G14.

2.2. The general structure of the model

The present model is constructed taking into account the listed
requirements. It consists of a N × N grid of square cells filling a
part of a plane. In each cell, an elementary automaton is located.
All automata are qualitatively identical, but their parameters vary
from cell to cell. An automaton has three states. The transition
between states occurs in continuous time. (The well-known ‘cellular
automaton’ class of models is different—within it, time is assumed
discrete, not continuous.)

Let us consider the rules that control an automaton. Traditionally,
input variables for choosing a transition of an automaton are the
states of neighbour cells. An equivalent approach, more convenient
here, is to describe automaton in a cell through its eight outputs
or commands sent to each neighbour. Which command to choose
depends on states of the automaton and its neighbours. Generally, a
random element can be used in formation of a command; however,
the variant of the model with random commands is only tried here;
this line is not developed in any depth. In the main part of this work,
the model rupture develops spontaneously in deterministic mode.
However, this evolution occurs over a random landscape: properties
of each individual cell are random, and are preset before evolution
begins (‘quenched heterogeneity’).

2.3. Grid of cells and time count

On a plane (x, y), a grid of square cells is located with centres at
{x,y} = {i�x, j�y}; i = 1,2, . . . N; j = 1,2, . . . N. Let �x = 1 and
�y = 1; and let us use as the time unit the time for an unperturbed
rupture to propagate along a side of a cell. Consider a cell and
its eight neighbours (Fig. 1a): four side neighbours at locations (i,
j ± 1) and (i ± 1, j), and four diagonal neighbours at (i ± 1, j ± 1).
Denote full rupture delay between failures of the central and any of
the neighbour cells, �t(f)

ij, as

�t ( f )
i j = �to + �ti j (1)

where �to is pure propagation delay, fixed; and �tij is random
additional delay. �to equals 1 for a side neighbour and 1.414 for a
diagonal neighbour. The set of �tij is a 2-D discrete random field
over the grid; its construction to be specified. It reflects local fault
resistance to rupture propagation. In terms of velocity m, in the ideal
case of �tij = 0, the value of m equals unity along any row/column
or diagonal of the grid.

2.4. States of an automaton and the permitted transitions

A cell can be in any of the following states: intact (I), failing (F) and
broken (B). The key property of a cell is the value of lifetime for its
F state, or delay �tij; it is a preset random number. The complete
N × N set of delays is defined by a random seed, unique for each
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run of rupture evolution, and by two parameters of the model, to be
described. Let us describe each state in more detail.

(1) State I. At the start of evolution of the grid, all cells, except the
nucleation cell, are in state I. Its lifetime is unlimited. A cell in state
I does not issue commands. State I changes: (I → F) on command
from a neighbour in state F, at the moment of its (neighbour’s)
transition (F → B).

(2) State F. At a particular cell (i, j), state F arises through the
transition I → F by a command received from one of its neighbours.
Consider a neighbour of the (i, j) cell which undergoes transition F
→ B at a certain moment t1. After delay �to, a timer is launched
at the (i, j) cell (‘moment of ignition’). Each neighbour which un-
dergoes the F → B transition tries to launch the timer; but this
occurs only once, at the earliest attempt. Later attempts do not
work as the cell is already in the F state, and only single I → F
transition is permitted. The timer is controlled by the preset life-
time of state F, set to �tij. At the moment when the timer runs
out, the transition F → B occurs in the (i, j) cell. This moment is
t1 + �t ( f )

i j = t1 + �ti j + �t0. At this moment commands are issued
that control the evolution of each of the eight neighbours. A com-
mand issued to a particular neighbour respects its state. For a state I
neighbour, the transition I→F is caused. For a state F or B neighbour
no command is issued. There is a special option of the simulator,
when the I →F transition can be caused in non-deterministic mode,
with probability, pIF, below unity. This case is intended to illustrate
percolation–style rupture models, soon found to be unrealistic. In
the main part of the work, pIF = 1. To initialize model evolution,
state F is ascribed to a preselected nucleation cell.

(3) State B. Dead-end state, with no outputs. Its lifetime is un-
limited. Borders of the modelling area are created setting them to B
state.

Note that despite discreteness of events, model time is continu-
ous; it advances only at the moments of I→F and F→B events.

What is the meaning of �tij? Madariaga (1983) classified con-
ceptual models of heterogeneity which determines HF radiation
into two groups. There is the ‘barrier’ group when external stress
field does not vary much, whereas fault strength is expressedly
non-uniform. In this case, �tij may be controlled by this strength:
the stronger is the cell (i, j), the larger is �tij, and the longer is
the failure process needed for a rupture to cross it. Another kind
of inhomogeneity is the ‘asperity’ one, when strength variation is
less significant whereas local stress is expressedly non-uniform,
caused for example by self-stress from previous fault motion (seis-
mic or creep), or by specific external stress field. In this case, high-
strength cell may be loaded near to its bearing capacity, and will
break with minimum delay; whereas for weaker cells, relative stress
may be lower and �tij may increase. To describe joint effect of
all these irregularity factors, the term ‘effective strength’ may be
used.

2.5. Simulating the field of heterogeneity

The preset table of �tij is formed as a realization of discrete random
field, which is assumed isotropic and self-affine. Such a realization
is easy to generate in the case of Gaussian statistics of �tij values.
However, a special technique is needed to generate fields with other
statistics. The approach I use is ‘quantile-to-quantile transform’
which is a modification of the Van der Waerden’s classical ‘nor-
mal score’ technique. Its common variant, called ‘normal quantile

transform’, is often used in many fields like hydrology, geostatis-
tics and more including seismology (Goda et al. 2014), to convert
non-Gaussian data into Gaussian quasi-data preserving their rank
(often to permit further use of statistical tests developed for Gaus-
sian data). The same approach can be used in the opposite direction
converting Gaussian values to non-Gaussian ones, in particular for
simulation of self-similar slip map over a fault (Gusev & Pavlov ;
Goda et al. 2014).

I use this technique to transform a Gaussian field into non-
Gaussian field with approximately the same correlation proper-
ties. This is done in steps. First, Gaussian random field zij is
generated:

zi j ≡ z(xi , y j ) = DFT
[
z pq (kx,p, ky,q )

] = DFT
[
k−ηζpq

]
(2)

where {xi, yj}, i = 1,2,. . . N;, j = 1,2,. . . N; is position of a cell,
DFT denotes discrete Fourier transform, k = {kx , ky} is wavenumber
vector, k = |k|, and ζ pq is standard Gaussian random, uncorrelated
(delta-correlated). Correlation properties (along x and y) are im-
posed through the k−η factor; at η = 0 the result is 2-D white noise.
Then zij are sorted, forming variational series [zij]m, m = 1,2,. . . N2.
For each member of this series, its quantile value [Qij]m = m/N2 is
found. Consider another, target, distribution law. I particularly used
the standard exponential law with cumulative distribution function
E(q) = 1–exp(–q). Consider inverse function E−1(Q) = loge(1–Q)).
It can be applied to [Qij]m producing an ordered sequence whose
members have standard exponential distribution. As the mean of
this law is unity, the desired mean value, τ , of the target distri-
bution is introduced by the additional τ factor. In this way, the set
[�tij]m = τE−1([Qij]m) is determined; its values are then sent to their
proper positions (i, j), forming the sought for �tij table. Its correla-
tion properties are approximately the same as those of the zij field;
that is �tij is close to a sample (realization) of self-affine random
field with mean value τ and power spectrum of the k−2η kind. (In the
particular exponential law case, the quantile-to-quantile transform
is excessive; but the procedure is standard, and is ready for eventual
use with other laws.)

The choice of the particular exponential distribution law for �tij

is a guess. It has single parameter, mean τ ; its variance σ 2(�tij) ≡ τ 2.
Therefore, a particular realization of the �tij field is determined by
the two parameters {η, τ }, and by a particular random seed used
to generate the ζ pq set. The exponential law for �tij was chosen
because properties of this law are appropriate: (1) random values
are non-negative, therefore a model rupture can only lag behind
the ideal unperturbed front (this property permits ‘islands’ only,
no ‘lakes’; it eventually can be rejected to increase realism); (2)
probability density function is monotonously decreasing: the larger
is delay, the less probable it is and (3) it has no mode (peak), that is
a characteristic value, whose meaning would be difficult to explain.
Note that for the most common—Gaussian—law, each of these
properties is violated. The choice of the exponential law is also
partly justified by the fact that the results of simulation based on
this assumption show no evident contradictions.

2.6. Effects of inhomogeneity

Random terms added to ideal rupture delays distort the shape of
rupture fronts (Fig. 2). Also the order of ignition of cells is per-
turbed. On Fig. 2, ignition sequences are back traced starting from
an arbitrary point on the front. One can see that the larger perturba-
tions are, the more convoluted are ignition traces: they stray more
intensively and become longer. Both these factors affect average
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930 Gusev

Figure 2. Random space–time geometry of rupture front and ignition paths.
(a) Sequential front positions (grey) and several example ignition traces
(red). The nucleation point is the SW corner. A case of weak delay pertur-
bations. (b) Like a, more intensive perturbations.

rupture velocity, in addition to the direct effect of additional �tij

delays.

2.7. Priming and stopping

Generally, model rupture is initiated by a single cell in state F. There
is no attempt in the present variant to stop the rupture realistically.
Rupture is abruptly stopped artificially when the front touches the
preset outer boundary, that is the enveloping square. Such abrupt
braking produces artefacts on simulated traces; bypassing this prob-
lem is discussed later.

2.8. Parameters to be monitored during rupture evolution

To characterize a particular style of evolution, the following param-
eters were selected for monitoring.

(1) Front leader propagation distance, rfr, measured in cell units,
is the distance from the nucleation point to the most distant point of
the front.

(2) Effective instant radius of the source, reff, is the aver-
age distance from the nucleation point to a point of the front.
It is calculated as reff = (NB/π ) 0.5 where NB is the instant
area of rupture defined as the current number of cells in state
B.

(3) Rupture velocity, m. Two variants of this parameter are used:
mr and me. mr is defined as rfr/t. This parameter can be directly
compared to observations. me is defined as me = dreff/dt, and de-
termined by linear regression over (t, reff(t)) pairs. This parameter
gives the average rate of spreading of the front. If the ratio me/mr is
close to unity, the front grows isotropically, like a distorted circle;
otherwise, if me/mr is much below unity, this may signalize that the
front forms significant individual ‘tongues’ (e.g. as in the case of
Fig. 5e).

(4) Root mean square (rms) width of front, w (Perrin & Rice
1994; G14). As explained above, w is standard deviation of deflec-
tion of a point of front from its mean or unperturbed position (see
sketch, Fig. 1b). The current front is assumed to consist of all state
F cells; both single connected and multiply connected fronts are
processed in the same manner. To determine the value of w at a par-
ticular moment of simulation time, one can use the set of distances
of the current random realization of front with respect to its refer-
ence position on the octagon. Actual distances are calculated along
a ray from the origin to each point of the front. The reference dis-
tance, for each value of actual distance, is defined as product of two
factors: azimuth-dependent, defined by the known standard octago-
nal shape, and time-dependent effective rupture radius. To analyse
evolution of w, it can be considered as a function either of time,
or of distance. For tracking evolution of an individual simulated
source at fixed parameters τ and η, using w(t) is most appropriate.
However for general understanding and for comparison with ob-
servations it is also useful to consider w(reff) and w(rfr), estimated
indirectly as w(t(reff)) and w(t(rfr)). For the aims of comparison,
the values wt100 = w(t|t = 100), wr100 = w(reff |rfr = 100) and
wr100 = w(reff |rfr = 100) are estimated, in the following way. First,
{t, w, reff} triples are accumulated during evolution. Then linear
regression of w versus t, versus reff or versus rfr is done in log–
log scale, and the required values are picked using approximating
trends.

(5) Logarithmic growth rate of w. It was studied in two vari-
ants: λt = d log w

d log t and λr = d log w

d log re f f
. These are estimated during

the same linear regression as described in previous paragraph.
Parameters λt and λr serve as exponents in the growth laws
w ∝ tλt or w ∝ rλr

e f f .
(6) Fractal dimension of front, D, specifies how complexity of the

front increases along with its growth; in other words, how increases
its deviation from a smooth ‘Euclidean’ line. D is determined from
the relationship Lfr versus Le where Lfr is the actual length of the
possibly fractal front, and Le is (imaginary) Euclidean length cal-
culated as Le = 2πreff. The value of Lfr is equated to the number
of cells in state F; a correction factor is added in order to guaran-
tee D = 1 for non-perturbed front. As follows from (Mandelbrot
1982), D ≈ d log L f r

d log Le
. In such calculation, it is supposed that the set

of instant states of the growing area of simulated source can be
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treated as the set of fractal islands of various sizes, each of them
representing possible source contour. Technically, it is convenient to
determineD − 1 ≈ d log(L f r /Le)

d log Le
; this is done through linear regres-

sion.

3 . E X P E R I M E N T S W I T H S I M U L AT O R :
S T Y L E S O F B E H AV I O U R O F T H E
M O D E L

Let’s consider examples of behaviour of the above-described model
at some characteristic sets of parameters. All experiments were
initiated at the grid centre.

3.1. Introductory examples

The deterministic closed shape of unperturbed front is illustrated
on Fig. 3(a). In this reference case of negligible τ , numerical front
is octagonal. It grows symmetrically and at a constant velocity. It
represents discrete approximation of a spontaneously growing crack
of circular shape; its velocity along eight fast directions in this case
is close to 0.97.

An example continuous perturbed front is shown on Fig. 3(b). In
its generation, the following parameters were used: η = 0.5, pIF = 1,
τ = 4. Rare ‘islands’ are seen that are formed by abrupt turns of
front, which sometimes result in pincer movement. Such islands
are transient features; all of these eventually disappear if the time
margin permits.

Ring-like, isometric fronts are typical for most simulations with
self-similar �tij field. However, through admixing extra spectral
energy at low wavenumbers, formation of unilateral asymmetric
ruptures is easily attained (Fig. 3c). The particular direction of the
fast-propagation ‘tongue’ is random and varies from run to run.

Self-similar �tij field combined with ‘probability of ignition’
pIF < 1 results in percolation-style cases (Figs 3d and e). Now when
the front propagates it leaves permanent barriers (‘islands’) in its
rear. Two examples are given for pIF = 0.30 and 0.25. At pIF = 0.30
many small and a few big ‘islands’ appear in the rear of the front. The
degree of irregularity of the instant perimeter is comparable to that
of the case of Fig. 3(b). At pIF = 0.25 the front loses clear contour
and becomes strongly cut up. Instead of a well-formed sponge-like
structure of Fig. 3(d), a shapeless seaweed-like structure appears.
Islands in the rear close up, forming a ‘lacy cloth’. At pIF = 0.25, in
a sequence of Monte Carlo runs, cases are frequent when the growth
completely stops; the plotted ‘successful’ variant was selected after
a few attempts. With the further decrease of pIF, down to 0.24–0.23,
the growth of front aborts practically always. The critical value
of pIF, defined as one which gives 50 per cent chances for front
to propagate to infinity at the given set of parameters, is close to
pIF = 0.27 in this case; it is the so-called percolation threshold for
the considered problem.

The last two cases remind the percolation cluster model after
Lomnitz-Adler & Lund (1992), mentioned in Introduction. Perti-
nent criticism of percolation cluster model was given above from a
seismogeological viewpoint. Also, within our model, front propa-
gation velocity for percolation cluster sources are unacceptable low
(below m = 0.25). For these reasons, ‘lace cloth’ cellular source
models with pIF < 1 are not considered further, the value of pIF = 1
is fixed hereinafter, and only ‘lace fringe’ models like Fig. 3(b) will
be discussed.

3.2. Styles of evolution of fronts: variable τ

Further, I try to visualize how the variation of the two parameters,
τ and η, affect the behaviour of the model. To generate a series
of plots, a set of values of one parameter is combined with a fixed
value of another parameter.

In the first series, Fig. 4, one can see the effect of variable τ :
τ = {0.63, 1.6, 4, 10, 25} at the fixed η = 0.5. When perturba-
tions are low (Figs 4a and b) the imprint of deterministic octagonal
shape can be noticed. In the series of plots of Figs 4(a)–(e) one
can see that with increase of τ , the amplitude of front oscillations
increases, and its qualitative character changes. At first, front is a
single perturbed curve, and a ray from the origin crosses it once.
Then, the curve becomes convoluted, so that in many cases a ray
from the origin makes multiple crossings. At last, such behaviour
intensifies, making lace-like appearance of front; islands of vari-
ous sizes appear. In other words, the front structure changes from
approximately smooth curve to fractal polyline. Front irregularity
is an important feature closely related to formation of incoherent
HF radiation (Gusev 2013, 2014); to characterize it I use rms front
width w.

3.3. Styles of evolution of fronts: variable η.

A series of plots for fixed τ = 4 and η = {0, 0.5, 1, 1.5, 2} is
shown on Fig. 5. Properties of front in this series are following:
at η < 1 fronts are, basically, isometric, whereas with approach to
η = 2 appreciable angular variations of growth rate arise. One might
compare this one-sided development of rupture to the tendency to
unilateral growth of real earthquake faults; but this guess may be
incorrect. One problem is that when η > 1, fronts evidently become
too smooth. Another difficulty is doubtful λ values, the matter to be
clarified later.

4 . S Y S T E M AT I C A L S T U DY O F
VA R I A N T S O F F RO N T P RO PA G AT I O N

Let us now perform systematical study of behaviour of the model,
with the aim to create the basis for eventual estimation of actual
values of parameters from observational data.

4.1. A technique for estimation of parameters of front
propagation

Further, the behaviour of some properties of fronts over two-
dimensional area of parameters (η, τ ) is studied. The zone η > 1 was
ignored, for the reasons explained later. As the significant param-
eters of rupture I selected the following two: (1) growth rates λr

and λt, and (2) average rupture velocity, m. As a certain digression,
also fractal dimension D of front line will be estimated, despite the
absence of observational data to match. Figs 6 and 7 illustrate the
process of estimation. The plotted linear trends were determined
based on pooled data of 25 Monte Carlo runs. For visibility, only
single variant on each plot is supplied with data points, with signifi-
cant decimation of samples along abscissa, and only for five Monte
Carlo runs.

Plots of Fig. 6 show the relationships log w(log t) and log w(log
reff) for two cases: fixed τ = 4 and variable η (Figs 6a and b);
and fixed η = 0.5 and variable τ (Figs 6c and d). In this and
other cases, discreteness produces instability at small t, therefore
linear regressions were performed over the t range [10, tfinal] and the
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Figure 3. Examples of space–time history of simulated rupture front. Hereinafter on such plots, the shade of grey codes time of transition of a cell into the
final state B: the later, the lighter. η = 0.5 is fixed. a—the reference case, obstacles are practically absent (τ = 0.05). In the four following examples τ = 4
is fixed. b—a typical case of ‘lace’ fronts obtained with self-similar �tij field and pIF = 1. c—a self-similar �tij field like one in b is modified by addition
of low-wavenumber component; this results in formation of tongue-like shape. In a particular run, rupture propagation becomes unilateral, though when
considered over many runs, its direction is random. d, e �tij field is self-similar; values of ‘probability of ignition’ are pIF = 0.30 and 0.23, correspondingly.
Top row a–e is complete picture; lower row f–k shows a zoomed fragment of each upper graph, here and in Figs 4 and 5. The grid 300 × 300 is used here and
in Figs 4–7.

Figure 4. Examples of space-time history of simulated rupture front. Hereinafter on such plots pIF = 1. Spectral exponent of heterogeneity is fixed: η = 0.5.
Mean delay τ which controls the degree of heterogeneity varies; τ = {0.63, 1.6, 4, 10, 25} for plots a to e. Same seed is used for all pictures.

corresponding reff range. The discussion of the revealed tendencies
is postponed to the following section.

Plots of Fig. 7 illustrate determination of m, and of fractal dimen-
sion D, they are organized in the same manner as those of Fig. 6. On
Figs 7(a) and (b), the case of fixed τ = 4 and variable η is illustrated.
On Fig. 7(a), the reff versus t dependence is shown; slopes of the
lines give the estimates of m. Fig. 7(b) shows the dependence of the
ratio log (Lfr/Le) on log Le, the slope of a linear segment yields the
estimate of D–1. On Figs 7(c) and (d) the case of fixed η = 0.5 and
variable τ is illustrated in the same manner as in Figs 7(a) and (b).
From these plots one can see that m is almost insensitive to variation
of η but varies expressedly with τ .

4.2. Simulations for systematic coverage of parameter
space

In the manner shown on Figs 6 and 7, variation of rupture pa-
rameters over entire investigated area of η and τ was studied. The
following discrete grids were used: η = {0, 0.25, 0.5, 0.75, 1} and
τ = {0.63, 1, 1.6, 2.5, 4, 6.3, 10, 16}. The values η < 0 (‘blue
spectra’) are physically improbable and were not examined. Also,
the values η > 1 were not examined for the reasons explained later.
Obtained relationships are given in the graphical form on Figs 8–
11. To obtain stable numerical estimates, simulations were repeated
in NMC = 1000 Monte Carlo tries; parameters were calculated for
each run and then averaged. On plots, standard deviation of indi-
vidual Monte Carlo estimates is given in many cases; it illustrates
the scatter of individual values for various realizations/events. The
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Figure 5. Similar to Fig. 4. Now τ = 4 is fixed, and variants differ by the value of η: η = {0, 0.5, 1, 1.5, 2} for plots a to e and f to k.

Figure 6. Illustrations for procedures of determination of rupture parameters. (a) Estimation of λt = d log w
d log t for fixed τ = 4 and η = {0, 0.25, 0.5, 0.75, 1}.

Straight segments for each value of η are obtained through linear regression over data simulated in 25 runs. Dots are w estimates for η = 0.5 obtained in five
Monte Carlo runs. Dashed lines with slopes 0.5 and 1.0 are guides for eye. (b) Similar to a, for λr = d log w

d log re f f
, (c) similar to a, for fixed η = 0.5 and τ = {0.25,

1, 4, 12, 36}; dots are for the case τ = 4. (d) similar to c, with argument reff.

Figure 7. Illustrations for procedures of determination of rupture parameters, continued. (a) Estimation of me = reff/t, for fixed τ = 4 and η from 0 to 1.
Dots are m estimates for η = 0.5 obtained in five Monte Carlo runs. Straight lines for each value of η (as indicated at the bottom) are obtained through linear
regression over data simulated in 25 runs. (b) Estimation of D-1 = d log (Lfr/LEu)/d log LEu) performed in similar manner. (c) Analog of a, for fixed η = 0.5
and τ from 0.25 to 36.(d) Analog of b, for fixed η = 0.5 and τ from 0.25 to 36. Negative slope of line 1 on plot d is an artefact of numerical estimation of D
when D is very near to unity.
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Figure 8. Relationships mr(τ ) and meff(τ ) for a number of η values. Here
and on further three figures, vertical bars at a curve show standard deviations
of individual Monte Carlo estimates. Here, bars are given for the curve with
η = 0.5, for several τ values; similar bars are also added for τ = 4 and
marginal values of η. The hashed area indicates the approximate range
of observed m values and the grey line is the observed reference value
(hypothetic average) fixed at m = 0.60; see the Appendix for details. Dashed
vertical line marks the tentative estimate of the typical τ = 2.5. Although the
curves look quasilinear at a first glance, at closer examination a suspicious
double bend (very stretched ‘S’) can be noticed. By using the log–log scale,
such a feature can be excluded, however at the cost of pronounced curvature.

rms error of the plotted average trends is NMC
0.5 (≈ 30) times lower.

The general mode of presentation is as follows: average parameters
are presented as functions of τ , with a particular η value serving as
the parameter of a curve.

Fig. 8 illustrates the behaviour of mr and me. On the selected
log–log scale, a clear monotonous negative trend versus τ is seen.
Two causes of the simulated trend are seen. One is the trivial increase
of delays at each propagation step, directly controlled by the value
of τ . Another factor is the convoluted propagation path, with steep
turns of local discrete propagation trace, more and more common
as τ increases (Fig. 2).

Dependence of mr on η is weak; for me it essentially disappears.
The cause of this difference seems to be the fact that at larger η,
angular variations of front shape increase: compare Figs 5(b) and
(d). Then, mr is determined by an individual particular ‘fast tongue’
of the front, with its other parts lagging behind; whereas the me

value is the average over all directions. Weak dependence of mr on
η means that this theoretical plot is useless for deriving estimates
of η from observations. Oppositely, if even broad a priori bounds
are set for η, one can well estimate τ from observed mr at least
approximately.

An interesting point is the scatter of individual Monte Carlo esti-
mates, which may well reflect real scatter related to randomness of
structure of individual faults at given τ . This scatter (in logarithmic
scale) is almost independent of τ , but grows with η very fast.

Fig. 9 shows λt (τ ) and λr (τ ) relationships. These relationships
are not identical, but are qualitatively comparable. As seen here,
the values η > 1 seem to cause physically highly improbable λ > 1
(front width grows faster than rupture size). Therefore only the

Figure 9. Relationships λr (τ ) (a) and λt (τ ) (b) for a number of η values. The
hashed area indicates the approximate range of realistic λ values assumed to
be equal to observational estimates of χ = −3 d log fc2

d log M0
, see the Appendix for

details. Grey solid line is the observed reference value (hypothetic average)
taken as λ = 0.60. Dashed vertical line marks a tentative estimate of typical
τ = 2.5 reproduced from the previous picture.

range [0 1] was systematically studied for η. The effect of τ on λt

(τ ) and λr (τ ) relationships is present but is not quite systematic;
whereas the effect of variation of η is expressed. The increase of η

results, at least at τ > 2, in stable increase of λt and λr . Therefore,
there are some chances to convert the values of λ derived from
observations into at least rough estimate of η.

Figs 10 and 11 are given mostly for general understanding and
are not used to derive any estimates. Fig. 10 shows the wr100(τ )
and wt100(τ ) relationships. The behaviour of wr100(τ ) is quite ex-
pectable. First, at a fixed distance r0 = 100, front width w(r0) grows,
in log–log scale, approximately linearly with increase of τ , reflect-
ing increase of front width with increased degree of inhomogeneity.
Second, it also systematically grows with increase of η. The cause
of this tendency is less evident; its probable underpinning is that
at the white noise case of η = 0, the effects of two adjacent het-
erogeneities can often be opposite and compensate one another,
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Figure 10. Relationships wr100(τ ) and wt100(τ ) for a number of η values.
Note stable increase of wr100 both with τ and with η.

Figure 11. Fractal dimension D of irregular rupture front, plotted against
τ , for a number of η values.

whereas at larger η (the case of expressed autocorrelation), many
adjacent inhomogeneities affect a relevant segment of front in a co-
ordinated way and therefore much more effectively. In the case of
fixed propagation time t0 = 100, the picture is different. The initial
increase of wt100 (τ ) is qualitatively similar to that of wr100(τ ), but
it soon saturates and negative slope appears. This tendency reflects
the fact that with increased fault heterogeneity, rupture velocity be-
comes relatively low; so at larger τ , wt100 cannot further follow the
increase of τ , because wr100 is, intrinsically, proportional to propa-
gation distance, and not to the time spent to reach this distance. On
Fig. 11, D(τ ) relationships are given. D increases with τ and, in the
range η = 0–0.75, also with η. At η = 1, a tendency to saturation
appears. Probably it develops further at η > 1 as suggested by less
irregular shapes on Fig. 5(d) and especially Fig. 5(e).

With the relationships mr(τ , η) and λr (τ , η) at hand, it is now
possible to compare the calculated relationships with observational
data, to be done in the next section.

5 . C O M PA R I N G PA R A M E T E R S O F
S I M U L AT E D FAU LT S T O P RO P E RT I E S
O F R E A L E A RT H Q UA K E S O U RC E S

In the current model, the style of fault evolution depends on the two
parameters τ and η. Comparing observed parameters with those of
simulated faults one may attempt to estimate the range of τ and η

for real faults. These estimates will be very preliminary as they rely
upon theoretical relationships of Figs 8 and 9 whose construction
was based on simplifications and uncertain guesses. These are:
unconstrained (near-circular in simple cases) rupture growth; self-
similarity of �t field; and exponential law for �t distribution. Still,
to find such estimates is at least a useful exercise; moreover, one
can hope to obtain reasonable order-of-magnitude estimates.

Determination of reference values for properties of real faults is a
separate problem, outside the line of this particular study; therefore
it is moved to the Appendix. There, the following summary esti-
mates are found through compilation: for normalized rupture veloc-
ity m (equated to mr): the range 0.45–0.75, the reference value 0.6;
for λ, equated here to λr : the range 0.45–0.75, the reference value 0.6
(the coincidence is accidental). It is assumed that λ ≈ χ = d log fc2

d log fc1
.

As must be clear from previous discussion, in order to estimate pa-
rameters τ and η of real faults one can try to use curves of Fig. 8 for
τ , and those of Fig. 9 for η. On Fig. 8, point and interval estimates
for m are shown at the ordinate axis. Similarly, On Fig. 9, point and
interval estimates for λr are shown in similar way. Reference values
are treated as point estimates. Using calculated trends of Figs 8 and
9 for calibration, from the observed values of m and λr, one can
derive estimates of τ and η.

The chain of this derivation is presented in the Table 1. The initial
acceptable range for η, of [0 1], is bounded: on the bottom—by the
condition of not permitting blue noise �tij field; on the top—by
physically highly doubtful values λr(τ ) > 1 at η > 1, see Fig. 9. Bold
values indicate accepted estimates. In selecting them, I believed that
taking into account the range estimates simultaneously on both m
and λ would result in unrealistically wide bounds. Summarizing,
observational evidence combined with the theoretical curves of
Figs 8 and 9 imply the following parameter estimates (rounded):
point estimates: τ = 2.5, η = 0.6; interval estimates: τ = 1–6,
η = 0.25–0.75.

6 . G E N E R AT I N G E X A M P L E S O U RC E
A C C E L E R AT I O N S P E C T R A

It is interesting to demonstrate operation of the developed concepts
and to check their ability to produce verisimilar acceleration spectra.
There are three specific features of HF part of source radiation: flat
acceleration spectra (‘ω−2’ property), two-corner spectral shape,
and diminution of directivity at high frequencies. Among these, only
the presence of the former two can and will be checked, because any
effects of directivity are fully suppressed both by near-symmetric
geometry of simulated front and by the selected position of the
receiver.

To simulate source spectra (i.e. far-field body wave spectra), the
procedure of G14 was used. I shall remind only its key points; a
reader is addressed there for more details. The approach of G14
is based heavily on (Das & Kostrov 1983, 1986, 1988; Boatwright
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936 Gusev

Table 1. Steps of deriving estimates of model parameters from observational data.

Input

Derivation step # Observed values estimates from previous steps Fig. used1 Output

1 m = 0.6 η1 = [0 1]2 8 τ 1 = [2.1 3.8]
2 λr = 0.6 τ 1 9 η2 = 0.623,4

3 m = 0.6 η2 8 τ 2 = 2.53

4 m = [0.45 0.75] η2 8 τ 3 = [1.1 5.6]5

5 λr = [0.45 0.75] τ 2 9 η3 = [0.28 0.78]5

6 λr = [0.45 0.75] τ 3 9 η4 = [0 0.84]6,7

7 m = [0.45 0.75] η4 8 τ 4 = [1 8]6

1Number of the figure used for deriving the estimate.
2A priori bounds.
3The final point estimate.
4Employing the narrow range of the theoretical m(τ |η) curves of Fig. 8, the interval estimate for τ = τ 1 is converted here to the final point estimate of η, with
accuracy ±0.02.
5The final interval estimate. The narrower (preferred) version, anchored at the point estimate of another parameter.
6The final interval estimate. The wider (cautious) version, anchored at the interval estimate of another parameter.
7Formally, the values η < 0 are also possible; these were excluded as improbable.

1988; Gusev 1989). The initial (not realistic) model is one of an infi-
nite zero-strength fault, with a strong patch or asperity that occupies
a bounded area �a on it, loaded by shear load. The term ‘asperity’
is used here, following Boatwright (1988), in a loose sense; the
patch �a can be relatively strong or weak; the only requirement is
finite strength. Rupture front nucleates at some point of �a, and
then sweeps over it; this causes successive failure of fault elements.
Failure of an element is instant in terms of stress drop (not in terms
of slip!). This failure generates body waves in each half-space, and
also fault-guided wave train, mostly of Rayleigh waves. For the
characteristic case of SH wave, the displacement and velocity from
a fault element dS at a far-field receiver at a point x′ = {x ′, y′, z′}
and time t can be written as

duSH,∞(x′, t)

= Aτ ′(ξ )H (t − (R − ξ · γ )/cS − t f r (ξ ))d S; A = 	SH
F

4πρ c2
S R

(3a)

d u̇SH,∞(x′, t) = Aτ ′(ξ )δ(t − (R − ξ · γ )/cS − t f r (ξ ))d S (3b)

where ξ = {x, y, 0} is location of dS, the hypocentre is at ξ =
0; τ ′(ξ ) is local dynamic stress drop on dS; R = | x′ |; γ = x′/R;
ρ is density; cS is S-wave velocity; tfr(ξ ) is the time of arrival of
rupture front to ξ ; 	SH

F is the radiation pattern of SH waves radiated
by a point force; H(·) is unit step and δ (·) is delta-function. Thus,
failure at dS produces elementary step in far-field displacement.
Integration of (3a) over �a produces the initial variant of source
time function. Note that (1) far-field force equivalent for this model
is single-dipole, and (2) its seismic moment M0 is integral of a sum
of step functions, therefore it equals infinity.

The next step to more realism is to account for limited size of a
free-slipping area, introducing a boundary which exists somewhere
around �a on a real geological fault. Denote the area enclosed by
the boundary and containing �a as �. Outside � entire fault is now
welded. This causes dying out of fault-guided waves (which include
running dislocation step) at some distance from the asperity �a. This
stopping of fault-guided waves converts step function (3a) into an
elementary unipolar pulse of finite duration, with abrupt leading
and, (typically) gradual trailing edges; let its shape be described
by G0(t, ξ ). It is at this moment that the second dipole appears.
It precisely compensates the initial one in terms of torque; this
guarantees symmetry of the resulting seismic moment tensor (Aki &

Richards 2002, sect 3.2). Far-field wave displacement time function
is now pulse-like and provides finite seismic moment.

And the final step (Boatwright 1988) is to assume that the entire
area � is completely covered by ‘asperities’ whose contributions
into the far-field waveform are additive. To obtain approximate
estimates, the duration and shape of the G0(t, ξ ) pulse was assumed
identical for all radiating spots on the fault: G0(t, ξ ) = G(t). This
element of the G14 procedure was followed here.

The pulse shape G(t), was selected following Boatwright (1988),
as

G(t) =
{

H (t) − 0.5(1 + cos π t/TB ; t < TB

0 t > TB
(4)

where duration parameter TB was selected following the assumption
that it is directly defined by the front width: TB = 1.67Tr where Tr

is rise time: Tr = wfr/mr. The rupture front both in the numeric
model G14 and here consists of a set of cells; only here they are
components of the fault model and not mere finite elements as in
G14. Each cell generates a spike timed at the arrival of front to
it. The sequence of spikes arrived to receiver was convolved with
the G(t) pulse. This convolution corresponds to certain filter in
frequency domain. It is just this filter that forms second spectral
corner, located at fc2≈ 0.5/Tr.

An important component of G14 was setting stress drop field
τ ′(ξ ) = τ ′

i j . It was simulated as realization of self-similar random
field with amplitude spectrum of the k−α kind, with the particu-
lar value of α set to 1.0. It was shown in G14 that the described
procedure results in spectra and traces, which satisfy acceptably
the three requirements listed above. In the current simulation, the
stress field (τ ′(ξ ) = τ ′

i j ) model of G14 was used again. Generally
speaking, instead of generating �tij and τ ′

i j as independent random
fields one might introduce correlation between them, in the manner
of for example Schmedes et al. (2012). Unfortunately, no good way
is seen to predict the kind of such correlation. For heterogeneity of
the ‘barrier’ kind, high (dynamic) stress drop is related to high local
strength, low local vr and large �tij. Oppositely with heterogeneity
of the ‘asperity’ kind, high local stress drop is related to a highly
loaded spot which may break with a minimal delay. As in reality
both modes probably combine, the independence of �tij and τ ′

i j

looks as a reasonable initial choice.
To perform simulation, one has to define elementary contribution

from a unit cell. As seen from (3b), for far-field velocity time
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function this contribution is delta-like for infinitesimally small fault
element, and therefore can be taken as one-sided pulse for a finite
cell of the model. The shape of this ‘unit’ pulse must be selected
sufficiently smooth to create no spectral distortions. I used pulse
shape function

Fc(t ′) = t ′2 exp(t ′), with t ′ = t/2Tc3 (5)

where 2Tc3 is the characteristic cell time, and Tc3 is the halfwidth
(onset to centroid time) of unit pulse. This function is selected in
order to provide f -3 falloff of acceleration spectrum at HF. The value
of Tc3 is related to the time interval that the rupture needs to cross a
cell. Therefore, it was assumed that Tc3 depends linearly on τ , and
the following formula was found by try and error:

Tc3 = 1.55 + 0.125t. (6)

The value of Tc3 defines the location of the upper cut-off of
acceleration spectrum, that is source-controlled fmax, or fc3. In entire
simulation of signals and spectra, the time step was set to 0.25; this
choice occurred to be sufficient to sidestep any significant artefacts.
The pulse (5) was used in convolution in the same manner as the
pulse (4).

In simulation of earthquake rupture, one should be accurate with
effects of rupture termination: when it is described inadequately,
artefacts in the form of unrealistically sharp stopping phases may
appear, distorting accelerograms and their spectra. In G14, the rup-
ture run over a rectangular area, and nucleation point was located
near one of its corners; thus stopping of propagation at the con-
tour of the area was rather stretched out in time. For this reason,
without any special measures, no significant contamination from
stopping phases arose. In the present case, when entire rupture front
is stopped simultaneously, and the receiver is located on fault nor-
mal, the displacement time history at the receiver shows abrupt,
jump-like, termination. Corresponding powerful spikes appear on
velocity and acceleration traces, and spectra are severely distorted.
For this reason, in order to generate more verisimilar time histo-
ries and spectra, simulated seismograms are artificially tapered over
their later part.

Three particular pairs of parameters (τ , η) were chosen to pro-
duce different intervals between fc1 and fc2, and three corresponding
series of accelerograms and spectra were generated. Each series in-
cluded 20 Monte Carlo runs (Fig. 12). One can see acceleration
spectra with two corners and a considerable range of plateau-like
behaviour. Originally, simulated seismic moments, M0, varied some-
what from one MC run to another because random realizations of
local stress drop (and implicitly of slip) were non-identical. To com-
pensate related scatter of no deep meaning, all spectra were reduced
to the common M0 (average of the original series). To make visible
different relative levels of HF spectral plateau, AHF, spectra were
once more normalized, now jointly, setting their average level to
unity at fc1. All simulated spaсe–time histories were played on the
same 400 × 400 grid; but time history durations, and with them fc1

values, varied somewhat depending on the average rupture velocity
(which is defined mostly by τ , Fig. 8). The (relative) position of the
second corner varies significantly, depending on the width of rup-
ture front, as expected. The case of Fig. 12(a) is one of a wide front
and thus of low fc2/fc1 ratio, with plateau of acceleration spectrum
well discernible and relatively low. The cases of Figs 12(b) and (c)
are of more and more narrow front, with increasingly higher level
of the plateau of acceleration spectrum. Unexpectedly, the slope of
the plateau is not completely stable: slopes vary systematically from
negative to positive values, within the range ±0.2. Still, around the
preferable values (τ = 2.5, η = 0.6) the slope is quite close to zero,

Figure 12. (a) Average (blue) of 20 simulated source acceleration spectra
(red) for the case η = 0.75, τ = 8. Lines with crosses are for spectra averaged
over log-uniformly located bands. Red circles are points of unsmoothed
spectrum. Cyan dotted line depicts idealized two-corner spectrum. Grey
arrows and cyan dots mark corner frequencies; their ratio fc2/fc1 = 5. Cyan
dashes at the ordinate axis denote spectral levels at corner positions. Insert
shows example front history over the 400 × 400 simulation quadrant used.
Ordinate scale, uncalibrated originally, is shifted vertically to set the spectral
level at fc1 to unity. For the explanation of the upper spectral cut-off see text.
(b) Similar picture for the case η = 0.6, τ = 2.5; fc2/fc1 = 22. (с) Similar
picture for the case η = 0.25, τ = 1; fc2/fc1 = 30.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/215/2/924/5063574 by Institute of Volcanology and Seism

ology FEB R
AS user on 09 O

ctober 2018



938 Gusev

in a good match with the ‘ω−2’ concept. To conclude, within the
performed simulation test the expected appearance of spectrum was
successfully realized: one sees a two-corner spectrum with acceler-
ation spectral plateau.

7 . D I S C U S S I O N

Departing from the typical ranges of observed parameters
mr = 0.45–0.75, λ = 0.45–0.75, this research resulted in tenta-
tive ranges of model parameters: mean additional delay per cell
τ = 1–6, the exponent of 2-D amplitude spectrum of delay field
η = 0.25–0.75. As a point estimate, one may accept τ = 2.5,
η = 0.6. It is interesting to juxtapose the obtained estimates with
parameters of real faults. The proposed range of η can be com-
pared to other spectral exponents of fault surface. As delay field in
the present model may represent strengths of cells, an appropriate
candidate for comparison is local stress drop, which may reflect
local strength. Mai & Beroza (2002) found the typical value for
amplitude spectral exponent for slip to be 1.75, this suggests the
exponent for stress drop field α = 0.75. However, Lavallée et al.
(2006) believe that high-wavenumber components of slip spectrum
may be artificially suppressed during inversion procedures. Their
preferred estimates for α are in the range (-0.15)-(+ 0.35), with
the average value around zero. It was also proposed to associate
local fault strength with the local slope of fault geometrical pro-
file (Main 1988). Candela et al. (2012) found amplitude spectrum
of fault profile to behave as k−(0.6–0.8). For a hypothetic fresh rup-
ture with such a profile, Main’s logic gives ‘blue’ strength spec-
trum (k+(0.2–0.4)), predicting anticorrelation of strength between ad-
jacent spots; but the applicability of this approach is disputable.
Taking into account these not quite consistent pieces of infor-
mation, we can treat the obtained range η = 0.25–0.75 as quite
acceptable.

As regards τ , its point estimate of 2.5 may look strange. Indeed,
at mean velocity of m = 0.6, mean delay per unit distance, that
is per cell size, is τ ∗ = m-1 = 1.67. At the same time, full av-
erage delay per cell is much larger: 〈�t ( f )

i j 〉 = 〈 �to 〉 + 〈 �tij 〉
= 1.25 + τ= 1.25 + 2.5 = 3.75. This contradiction is apparent
however as it tacitly assumes that the failure process develops along
a single chain of cells. In fact, however, for a certain cell of a
front line, among its eight neighbour cells, about four of them have
already failed before, and any of the four can ‘ignite’ it. At the
simplest assumption that all the four themselves were ‘ignited’ si-
multaneously, actual effective additional delay per cell will be on the
order of the smallest value among four independent exponentially
distributed random numbers, equal on the average to τ ′′ = 0.25τ ,
or 0.63. Adding mean propagation delay of 1.25 gives 1.88, in an
unexpectedly good match to the above-discussed value τ ∗= 1.67.
This match should not be taken too seriously: there are other par-
ticipating factors. Firstly, rupture front can go around strong spots
of the general strength relief rather effectively; and this Fermat-
style ‘optimization’ increases observed velocity as compared to the
rough estimate. There is another factor, whose effect is of opposite
sign : the propagating rupture spends additional time, as compared
to straight-line propagation, because of random curved path of the
‘ignition signal’ (Fig. 2). It is difficult to estimate contributions of
the last two effects into final observed velocity; still they look as
secondary. It is possible to conclude that the obtained estimate of

τ shows no striking misfit when compared to the empirical aver-
age/typical value of m.

Evidently, some characteristic properties of real earthquake
sources are not described within the limits of the performed sim-
ulation. First of all, it is elongated fault geometry; also it is often
unilateral propagation mode. Within the present general approach,
this behaviour can be easily simulated quite traditionally, adding
suitable artificial external borders, and positioning the nucleation
point asymmetrically within them. This was done in G14 where
the borders were impenetrable (of infinite strength). Such artificial
barriers are somewhat doubtful tectonophysically, and may also pro-
duce unwanted stopping phases. Another way to stop rupture (or to
switch off radiation) might be to taper stress drop field along the pe-
riphery of simulation area. Both these approaches look acceptable
for future study, though somewhat artificial.

As regards unilateral propagation mode in particular, it was found
by try and error that asymmetric propagation can be simulated
within the developed approach (see Fig. 3c). It was found how-
ever, that to generate unilateral ruptures, one needs to significantly
enhance low-wavenumber part of delay spectrum. To achieve this,
one can either use unrealistic η values around or above 2.0, or to
admix low-wavenumber term to the main self-similar delay field.
Both ways look unattractive. Also, the problem of fully consistent
stopping of a rupture remains unresolved in this approach. Gen-
erally, causes of unilateral elongated ruptures seem to be an open
question.

It was found in G14 that at fixed values of fault size L, seismic
moment M0 and fault-average stress drop 〈�σ 〉 , AHF and corre-
spondingly the value of ‘stress parameter’ are determined by the
wfr/L ratio. The present results (Fig. 12) permit to extend this chain
of relationships and to formulate the following statement: at given
values of L, M0,〈�σ 〉 and of spectral exponent of fault heterogene-
ity, η, both the AHF and the ‘stress parameter’ are determined at
least partly by the value of mean delay parameter τ , which oper-
ates through the intermediate wfr parameter. Generally, the larger
is τ , the larger is w, the lower is the fc2/fc1 ratio and the lower is
AHF. This concordant behaviour of fc2 and AHF is well seen on Fig.
12; the effect of some variations of η is secondary. Therefore, the
results of simulation by the kinematic cellular model may improve
understanding of physical factors that affect strong ground motion
amplitudes.

An important absent point is the direct comparison of w values
to observations (e.g. to slip pulse width). To do this, one needs at
first to pass from dimensionless values of time and distance used
here, to natural scales. To do this one needs observational estimates
of unit cell size. As noted in Introduction, its order of magnitude is,
roughly, 100–300 m, but establishing it more accurately is a point
of a separate study.

Another point for future study is the effects of various probability
laws for local values of delay field. The absence of such analysis is
the main cause why the present study should be qualified, rather, as a
demonstration of concept. Confident estimates of parameters τ and
η can be obtained only when a proper probability law is assumed;
thus, the estimates obtained above should be treated as tentative.
Some less significant generalizations of the present approach are
also possible, for example permitting negative values for �tij, and
thus allowing ‘lakes’ of front line. However, first experiments along
his line did not indicate any qualitative changes of behaviour of the
model.
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8 . C O N C LU S I O N

A continuous-time cellular model is designed, aimed at description
of the evolution of random rupture front during formation of earth-
quake source. The particular version of the model is developed,
controlled by two parameters: mean additional front delay per cell,
τ ; and the exponent η of power-law power spectrum of assumedly
self-similar 2-D random delay field.

A set of parameters of rupture evolution is introduced and a
technique for their estimation is proposed. Among them, the two
are found which can be compared to parameters of real earthquake
ruptures. These are: normalized front velocity m (Mach number),
and the exponent λ which describes how fast the rms width of
random front increases in the process of front propagation.

By Monte Carlo experiments, a variant of relationships m(τ , η)
and λ(τ , η) is determined. On this basis, and using observational
data on m and λ, tentative estimates of τ and η for real faults are
derived.

Numerical experiments were performed in which the simulated
rupture fronts were combined with a realistic model of local stress
drop field over a fault surface; radiated far field body wave accelera-
tion signals from such sources were found and converted to spectra.
These spectra bear two characteristic properties of observed source
acceleration spectra: two distinctive spectral corners, and a plateau
above the second corner frequency.

Despite being kinematic, the developed model provides some
insight into the physical mechanisms which control strong ground
motion amplitudes; it therefore may occur useful for eventual pre-
diction of realistic strong motion and for estimation of its variability.
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A P P E N D I X : C O M P I L I N G E M P I R I C A L
E S T I M AT E S F O R T H E VA LU E S O F
FAU LT PA R A M E T E R S

To make meaningful comparison with the results of simulation I
need observational estimates of scaled rupture velocity, m, and of
exponent of log w versus log L relationship, λ.

Rupture velocity

In this subsection data will be compiled on m = vr/cS. Early esti-
mates of vr were compiled by Geller (1976) who converted them to
m. His average, m = 0.72 ≈ 0.7 over 23 cases was widely accepted.
Recently, estimates of vr for 114 Mw ≥ 7 subduction earthquakes
were obtained by Ye et al. (2016) who performed mass inversion
of rupture evolution for each event. Their reference point estimate
is vr = 2.5 km s–1, and interval estimate is 2.0–3.0 km s–1. For
subduction events, there is no well-established estimate of cS as this
interface is to a large degree bimaterial. I chose cS = 4 km s–1 and
got: average m = 0.625, and the range 0.5 to 0.75. For 47 Mw = 3.5–
5.4 earthquakes analysed using regional Northern California data,
Seekins & Boatwright (2010) obtained average m around 0.8 and
about 10 per cent data with vr > 1 (intersonic). The difference with
large subduction events may result from simpler, typically unit-
segment Mw = 3.5–5.4 sources as compared to often multisegment
ruptures of large events.

Independent estimates of m can be derived combining rupture
duration d and fault length L data. One can estimate vr as θL/d
where θ is the average degree of unilaterality of ruptures; its pre-
ferred value must be assumed. I set it to 0.875 which is the average
between the purely unilateral case of θ = 1 and the case of uni-
form random distribution of hypocentre along length, which gives
θ = 0.75. Estimates will be further discussed based on empirical
regressions of d and L for shallow earthquakes picked at Mw = 7.
An alternative to d proper is using somewhat more stable temporal
centroid dc that can be equated to 0.5d. Regression of Duputel et al.
(2013) gives dc = 8.8 s that produces d = 17.6 s. The estimate of
dc after Ye et al. (2016) is practically identical. As for d, from the

regression of Vallée (2013), d = 23 s. Earlier regression of d(Mw)
after Houston (2001) (based on inversions of Tanioka & Ruff 1997)
gives d ≈ 17 s. As a summary estimate I use 18 s.

For L, the classical regression of Wells & Coppersmith (1994)
predicts L = 49 km for all variants of unit tensor stacked. Compila-
tion after Blaser et al. (2010) gives L = 46 km for pooled data. From
Leonard’s (2010) data analysis one obtains L = 40 for dip-slip and
L = 50 for strike-slip cases, with average of 45 km. As a summary
estimate I use 46 km. Combining with θ and d values selected above
this results in vr = 2.24 km s–1. Because using of mixture of crustal
and subduction data in L estimate, cS = 3.8 km s–1 is used to derive
m, resulting in m = 0.59. As the final point estimate m = 0.60 is
taken, and the interval estimate is set as [0.45 0.75].

Scaling of second corner frequency and its relation to that
of rms front width

It was found in G14, eq. (10), through numerical simulation, that
rms front width, w, is approximately proportional to 1/fc2, where
fc2 is the second corner frequency of source spectrum. Therefore,
one can expect that scaling of w can be deduced from scaling of
fc2. Observational data on scaling of fc2 were compiled by Gusev
(2013) who found them to show certain scatter. For χ = d log fc2

d log fc1
from (Atkinson 1993) one can derive χ≈ 0.5 for Eastern North
America data. From (Atkinson & Boore 1998) follows χ = 0.46 for
Western USA. From left cut-offs of Mexican acceleration spectra
of (Aguirre & Irikura 2007). Gusev (2013) derived χ = 0.39. The
trends of interbarrier interval 2ρ, a parameter of the barrier source
model, can be hypothetically be used to estimate χ , but this is
rather uncertain. If one assumes this possible, from Beresnev &
Atkinson (2002) one would obtain χ = 0.8 for Western USA data;
from Halldorsson & Papageorgiou (2005) this value will be χ = 1.
Gusev (2013) concluded that the value χ = 0.5 can serve as a
reasonable first approximation. Assuming kinematic similarity of
sources χ = −3 d log fc2

d log M0
= − d log fc2

d log L .
Recently Denolle & Shearer (2016), using abundant good-quality

teleseismic data found that for dip-slip sources, the log fc2 (log
M0) relationship consists of two branches. At lower Mw ≤ 7–7.5,
χ ≈ 0.6, whereas at larger Mw, fc2 saturates and χ approaches
zero. Such a tendency, as well as the difficulty of estimating fc2

from regional data at larger magnitudes, may partly explain the
mentioned scatter of estimates of χ . The value χ = 0.6 will be
chosen as the preferred point estimate, with the assumed range
of scatter (0.45–0.75). It corresponds to magnitudes Mw ≤ 7.5.
For larger magnitudes, as one can derive from Denolle & Shearer
(2016), ruptures seem to be definitely confined in width; thus, it
is hardly adequate to confront their observed trends to the present
results of simulation of unbounded propagation of rupture. On the
basis of the mentioned simulation results of G14, the estimates of
χ will be treated as estimates of λ.
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