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Abstract

To study the temporal organization of global volcanic activity over time scales from years to centuries, the following three event sequences

were studied: two subsets of the regular catalog of eruptions after Siebert and Simkin [Siebert, L., Simkin, T., 2002. Volcanoes of the World. . .

http://www.volcano.si.edu/gvp/world/], and the “ice core volcanic index” (IVI) sequence, based on the volcanic eruption record as acid layers

in big glaciers (Robock, A., Free, M.P., 1996. The volcanic record in ice cores for the past 2000 years. In: Jones, P.D., Bradley, R.S., Jouzel, J.

(Eds.), Climatic Variations and Forcing Mechanisms of the Last 2000 Years. Springer-Verlag, New York, pp. 533–546). To perform the statistical

analysis in a meaningful way, data subsets were extracted from the original data, with size thresholds and time intervals carefully selected to make

these subsets nearly homogeneous. The analysis has revealed, generally, the tendency to clustering, manifested in the following three forms: (1)

The event rate is not uniform in time: event dates form active episodes (“common” clusters). (2) In the time-ordered, sequential list of sizes of

eruptions, larger events do not appear purely randomly; instead, they form tight groups (“order clusters”). (3) The volcanic products discharge rate

is significantly non-uniform, and shows episodic (intermittent or bursty) behavior. It was also found that for the volcanic sequences analyzed, the

two types of clustering behavior mentioned in (1) and (2) are positively correlated: larger events are concentrated at the periods of higher event

rate. Such a relationship is best demonstrated by the fact that there is clear negative correlation between the following two time series: (1) of the

exponent b of the power law size–frequency distribution (the analog of b-value of the Gutenberg–Richter law for earthquakes) and (2) of the current

event rate. Power spectra of the analyzed sequences mostly follow power laws, with negative exponent β. Thus, these sequences can be qualified as

pulse flicker noises. In other words, they are fractal sequences with correlation dimension Dc = β + 1 < 1, and both their clustering and episodicity

are of self-similar character. The revealed peculiarities of the global volcanic sequence suggest that some global-scale mechanism exists that is

responsible for their origin. They are also or primary importance for understanding the impact of volcanism on climate.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The temporal structure of volcanic processes is interesting

in itself, important at least for phenomenological description

of observations. If established, the peculiarities of the tempo-

ral structure may elucidate mechanisms that are hidden under

the observed variety of volcanic phenomena. Also, the probable

impact of volcanism on climate can be significantly modified

when volcanic aerosol formation is systematically organized in

time. One more field where the understanding of the temporal
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structure may be useful is the study of volcanic hazard. In a num-

ber of studies it has been noted that that the temporal structure of

volcanism is non-uniform, episodic in time for such processes

as ocean ridge volcanism, hot spot volcanism, explosive volcan-

ism in island arcs and trap volcanism (Kennett et al., 1977; Rea

and Scheidegger, 1979; Makarenko, 1982; Cambray and Cadet,

1996; Sigurdsson, 2000; Prueher and Rea, 2001). However, these

studies analyzed episodicity only in qualitative terms; no formal

description for the episodic temporal structure of these volcanic

processes was proposed. The described studies did not show

specific time scales for episode durations. This may suggest that

active episodes arise in time in a statistically self-similar man-

ner. For historic timescales, statistically self-similar or fractal

behavior of volcanic eruption sequences has been revealed by
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Dubois and Cheminee (1988, 1991), and Telesca et al. (2002). A

detailed study of fractal space–time structure of intrusions was

made by Pelletier (1999).

There are, however, other viewpoints and approaches in the

analysis of volcanic eruption sequences. Some studies (e.g.,

Wickman, 1966; Ho et al., 1991; De la Cruz-Reina, 1991; Jones

et al., 1999) either assume or prove that eruptions of a partic-

ular volcanic center or of an area behave purely randomly, as

a Poisson process. There are also models of non-homogeneous

Poisson processes, with variable (deterministic or random) event

flux density (e.g., Ho, 1991; Connor and Hill, 1995; Jaquet

and Carniel, 2001). Bebbington and Lai (1996) found that the

Poission model is valid for one of the two volcanoes studied,

but was rejected for another one that showed short-term erup-

tion clustering (or, equivalently, correlation between events);

neither of the two manifested long-term memory (and thus frac-

tal behavior). Similarly, Godano and Civetta (1996) found that

correlation of Vesuvius eruptions, although observable at short

delays, practically disappears at long delays; and Jaquet and

Carniel (2001), analyzing seismic activity at Stromboli, found

that only short-term memory/correlation is present. Also, ten-

dencies to periodicity of eruptions have been revealed, e.g., by

Wickman (1966) who noted cyclic behavior of individual volca-

noes, by Ammann and Naveau (2003) who found an expressed

76-year cycle in volcanic activity in tropical zone since 1400

using ice core data, and by Mason et al. (2004) who found a

yearly cycle of eruptive activity.

Generally, the multi-scaled clustered behavior is common

but not universal tendency, and its presence for any particular

data set needs separate analysis. In such an analysis, the prob-

lem of data completeness is specifically important. Although

some approaches has been proposed for treatment of incomplete

data (Guttorp and Thompson, 1991), really convincing results

can only be obtained if one is provided with a homogeneous,

consistent initial data set.

A few kinds of temporal structure of volcanic event sequences

have been mentioned above. To discuss them, more accurate ter-

minology is needed. Consider first the approach when the event

size information is ignored. For such cases, we shall further

call the tendency of event rate/density to form episodic maxima

“common clustering”. This term is needed in order to distin-

guish this kind of behavior from another mode of clustering that

we call “order clustering”. To observe this second kind of clus-

tering, event sizes should be analyzed along with event times.

Observing a sequence of events of various sizes, one can note

a tendency of large eruptions to appear in clusters (Gusev et

al., 2003). These clusters are seen in the time-ordered event list,

with accurate event times ignored. It is important to realize that

this “order clustering” phenomenon is completely independent

of common clustering, when sizes of events are ignored, and

should not be confused with the latter. Order clustering was first

revealed in global and regional earthquake catalogs (Ogata and

Abe, 1991; see also Gusev, 2005).

Both common and order clustering may be limited to short

time/number delays (short-term clustering, with a certain limited

correlation time), or to be manifested simultaneously for many

time scales, including the longest among those observed. In this

latter case we speak of long-term clustering, or long-term mem-

ory. In the simplest case, clustering behavior can be organized

in a similar way on all analyzed time scales; then we speak of

self-similar or fractal behavior (Mandelbrot, 1982). Sometimes,

the analyzed range of scales can be divided into sub-ranges with

different fractal behavior in each (Dubois and Cheminee, 1993);

but data sets studied here are limited in volume and do not permit

such a fine analysis.

Generally speaking, clusters of each of the two described

kinds may arise independently. Alternatively, they can occur

in some organized fashion, e.g., positively or negatively cor-

related. The actual mode of behavior is unknown, and its

study might shed some light on the mechanisms that con-

trol the evolution of volcanism. It is difficult, however, to

develop this line of study with data sets of the actual size

(100–300 events). Therefore, an indirect approach was devel-

oped, based on the following observation. During the time

segment occupied by an “order cluster”, the fraction of large

events (among all events) can be expected to be unusually

high. This fact suggests that order clusters can affect the size

distribution of events. For many kinds of natural (and social)

phenomena, the event size distribution is near to power law

(Pareto law), and this kind of distribution was also noted for

eruption sizes (Turcotte, 1992; Simkin, 1993) as well as for

earthquake energies/seismic moments. With respect to earth-

quake sequences, it is common to monitor size distribution

variations through the study of the exponent of the mentioned

power law, commonly denoted “the b-value”. One can expect

that this approach can be applied to volcanic sequences as well.

This is done in the following, with an unexpectedly definite

result: common clusters and order clusters show clear positive

correlation.

Speaking abstractly, there is a multitude of modes of possible

non-uniform behavior of a volcanic sequence. One of the sim-

plest and often observed forms of such a multi-scaled behavior

is the scale-invariant or self-similar behavior. Such processes

are called fractal time sequences, or flicker noises (see e.g.

Mandelbrot, 1999). The fractal behavior of natural and artifi-

cial phenomena attracted very wide attention recently in many

fields of science; a number of studies were listed above that

suggest that the formation of fractally organized clusters may

be considered to be a reasonable initial hypothesis in the study

a volcanic sequence. For this reason, in the following analy-

sis the fractally clustered or intermittent behavior is considered

as a main alternative to the uniform, non-clustered behavior.

Recently, updated versions of two important data sets represent-

ing global volcanic activity has been kindly made available for

me by their authors. In the following, these global data sets are

used to achieve better understanding of the temporal behavior

of global volcanism over time scales from months to hundreds

of years.

When event dates and sizes are combined in a catalog of

events, they define the temporal structure of the output of erup-

tion products, further called volcanic discharge. Through the

accumulation of volcanic material and thus formation of vol-

canic rock sequences, this output determines, to a large degree,

the geological effect of volcanism. Its analysis is critical for
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possible comparison to geological history because individual

eruptions rarely can be identified in the geological record.

Generally speaking, the rate of accumulation of eruption

products may be uniform or demonstrate some specific behav-

ior, e.g., to be periodic or, oppositely, an episodic/clustered one.

The above-mentioned studies based on volcanic rock succes-

sions often demonstrate the episodic behavior of volcanism in

time. It is interesting to find out whether this behavior can be

seen in the dated volcanic event sequences. Therefore, possi-

ble fractal structure of volcanic discharge shall be analyzed in

parallel with the study of clustering.

The organization of the paper is as follows. It begins with

general discussion of temporal properties that can be expected

for eruption sequences. Initial data and their preprocessing are

then described, and three data subsets are specified. Further, for

all these subsets, event rate variations, order clustering, volcanic

product discharge rate and b-value variations are analyzed. The

reality of all these modes of behavior shall be shown for all or

at least for two of the three analyzed sequences. Each of these

analyses is prefaced by discussion of the particular processing

procedure. Lastly, joint analysis of results is given, over various

analyzed features and over data sets.

2. Known and possible peculiarities of temporal

structure of volcanic event sequences

Before considering possible features of temporal behavior

of volcanic event sequences, data selection criteria must be

discussed. One can note that data selection standards have not

yet been settled in this field. The studies of seismicity can make

a model in this respect. In seismology, both historical and recent

(instrumentally studied) events are quantified by magnitude

value. To guarantee that data subsets are uniform, the total

catalog duration is divided into subperiods of approximately

constant degree of completeness. A certain magnitude threshold

is selected for each subperiod so that events above this threshold

can be considered as nearly complete. Such an approach makes

seismicity data acceptable for statistical analysis. In the case

of volcanic eruption data, their homogeneity can be violated

by gaps in reporting, inaccurate event size quantification, time-

variable data selection criterion, etc. If, by measures exemplified

above, a volcanological data set under analysis is not made

homogeneous, one can easily encounter temporal peculiarities

that are no more than artifacts emulating properties of natural

origin. An additional requirement, specific for volcanology, is

that the history of volcanic activity should be representable as a

sequence of dated individual events of negligible duration; this

shall be assumed for the data sets under study.

To fulfill the listed requirements, first a certain size parame-

ter must be ascribed to each eruption event. We assume that this

very important step has already been performed by data com-

pilers. Second, a certain lower threshold must be set for event

size, to provide data completeness. Both these requirements can

be fulfilled only approximately with real data, because the accu-

racy of size estimates of eruptions is limited, and because the

smaller is an event, the larger are chances for it to be unreported.

Although selecting a high threshold for size might minimize

the probability of gaps in data, it also minimizes data volume,

often making statistical analysis impossible. Thus, some com-

promise is needed when selecting the threshold. One important

practical requirement is that the threshold must be stable for

entire time span of the analysis. With indefinite, uncertain and/or

time-dependent threshold for data selection, any quantitative

data analysis may become (and sometimes do become) mostly

meaningless.

To verify at least approximate homogeneity of a data set,

one can use the following two tests. The first one, that fol-

lows the practice of seismicity studies (cf. also Gusev et

al., 2003), is based on the assumption that the size distribu-

tion (size–frequency law) for eruptions follows the power law

(Turcotte, 1992; Simkin, 1993) This law can be written either

in a differential form (for histogram n(·)), or in an integral form

(for cumulative sum N(·)):

n(10−0.5V < V ′ < 100.5V ) = ad − b log10(V ) (1a)

N(V ′ > V ) = ac − b log10(V ) (1b)

where V is a certain measure of the amount of eruption products

that quantifies the eruption size. In the following this measure

will be called “volume”; generally, other measures, like mass

or energy may be more adequate, but this point is outside the

scope of this paper. The observed value of the exponent b in (1a)

and (1b) is mostly in the range 0.6–1. Of course, this law is not

strict; but when for a certain data set it is clearly violated (e.g.,

n(V) does not decrease monotonically), this strongly suggests

incompleteness of this data set.

Another way to verify the completeness of data is to check

whether the event rate is approximately uniform. In the quite

common case when the event rate systematically increases as

time approaches to the present moment, one can strongly sus-

pect a drifting (decreasing) lower threshold of event size or,

more or less equivalently, a gradual increase in the degree of

completeness of smaller-size events. It must be noted that both

proposed data checks are informal: natural data may deviate

from the ideal size–frequency law (1); also the constancy of the

small-event rate can be no more than approximate (its natural

variations form just the above-discussed clusters). Only when a

data set can pass the mentioned checks, one can try to analyze

its temporal structure. With real data, this practically means that

an approximately uniform subset of data must be selected for

analysis, with a certain time window and with a certain lower

bound on event size.

The best-known sort of temporal structure is a non-uniform

event rate, manifested, e.g., as a systematic drift of the aver-

age event rate. In other cases, there is no evident trend, whereas

the deviations from purely random timing of events are present.

These deviations may have various forms as, e.g., a tendency to

periodicity, or a tendency to the clustered or burst-like behavior,

or expressed as stochastically varying event density. The ten-

dency of event dates to form tight groups/clusters on the time

axis, or, equivalently, for event rate to form clear maxima, is

called “common clustering” in the following.

Another, less-known tendency may appear in a sequential

list of event sizes, when one takes into account only the order of
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occurrence and ignores accurate dates. In this list, events of dif-

ferent sizes can be distributed completely randomly, or show

some structure. (A fully artificial example is the occurrence

of events in the order of their sizes: the smallest, the second

smallest, etc.) A kind of structure that was found to be actu-

ally present in volcanic (and earthquake) sequences is “order

clustering”, or the inherent tendency of the largest events to

occur “too often” as close neighbors in the time-ordered list.

(“Too often” means “significantly more often than expected for

a randomly shuffled event list”.) Accurate timing is irrelevant

for order clustering, in contrast to “common” clustering when

the rate of events, whose size is now inessential, varies in time,

producing in particular event rate maxima, or equivalently tight

groups or clusters. See Gusev et al. (2003) for an example of

order clustering of eruptions and for the detailed discussion of

this phenomenon.

The order clustering behavior has much in common with tem-

poral variation of b-value. Indeed, a time segment with unusually

high number of large events must have unusually flat graph of

size–frequency distribution, that is, unusually low b-value. The

close connection between order clustering and b-value variation

provides a convenient way to study the temporal relationships

between common and order clustering (avoiding the awkward

problem of identification of individual clusters). When both

common and order clustering are present in data, one can ask

whether their time variations match (are in phase), or “anti-

phased”, or show no simple correlation. To perform such an

analysis, one usually coverts a data set into a sequence of inter-

vals; then he must apply a tool that can ascribe to each window

its degree of common and order clustering. The natural measure

of common clustering is the local estimate of event rate. And to

measure the degree of order clustering one can use just the local

estimate of b-value.

A significant aspect of the time structure of volcanic

sequences is the character of the discharge of volcanic products.

Like event rate, volcanic discharge rate (VDR) can be uniform,

monotonously or randomly drifting, etc. Speaking of episodic

or intermittent behavior of VDR, one should clearly distinguish

three factors that control its irregularity: (1) short eruption events

as opposed to inactive background (may become disputable for

long-duration eruptions); (2) heavy-tailed size distribution of

eruption sizes (Eqs. (1a) and (1b)), resulting in the dominant

contribution of the largest events into the long-term-averaged

VDR; and at last (3) episodic temporal behavior proper. It is the

latter factor that is under study in this paper.

The listed features of the temporal structure of volcanic

sequences are not independent. For example, both the episodic-

ity of event rate and order clustering, each operating separately,

would result in the episodicity of VDR. If both factors are

present, the outcome is less definite. When order clusters match

maxima of the event rate, the two phenomena shall amplify one

another, resulting in the enhanced expression of episodicity of

VDR. Oppositely, when order clusters match minima of event

rate (the case of anti-correlation of the two types of clustering),

episodicity of VDR shall be reduced or even completely sup-

pressed. Thus, all parameters of the temporal structure must be

analyzed jointly.

3. Initial data sets and extraction of nearly

homogeneous subsets from them

3.1. Initial data sets

The first data set analyzed is the well-known global catalog

of volcanic eruptions of the Smithsonian Institution (Siebert and

Simkin, 2002; see also Simkin and Siebert, 1994). Lee Siebert

kindly provided its recent version (as of 2004), labeled SMI in

the following.

Another data set to be considered here is the record of vol-

canic activity of the last centuries as fixed in of the ice core

volcanic index (IVI) proposed and compiled by Robock and

Free (1996; see also Robock, 2000). Alan Robock (personal

communication, 2004) kindly provided the most recent version

of this data set. Determination of IVI uses dated annual lay-

ers of the ice extracted from boreholes in big glaciers. Some

of these layers contain H2SO4 of presumably volcanic origin.

The IVI list was produced by critical compilation of acid layer

sequences found in a number of locations in Northern and South-

ern hemispheres. The acid layers are formed by the following

mechanism: an explosive eruption forms an eruption column

that penetrates the stratosphere and there injects SO2 that is oxi-

dized to SO3 forming finally H2SO4 droplets; this aerosol is

dispersed, by stratospheric winds, not quite uniformly, over the

respective hemisphere and, in smaller amounts, over the opposite

hemisphere; aerosol slowly settles making local precipitation

(snow) marked by greatly increased H2SO4 content; the snow

accumulates and is buried to form a layer in a glacier. The char-

acteristic times are weeks to months for aerosol dispersion and

about 1 year for aerosol settling. Many factors prevent the local

H2SO4 content to be a completely reliable indicator of volcanic

activity. The main two of these factors are an unstable relation-

ship between the size of eruption and the amount of H2SO4

injected into the stratosphere and the non-uniformity of global-

wide aerosol dispersion and accumulation. The last factor has

been partly overcome by matching records from geographically

distant glaciers.

As for the physical meaning of IVI, it is the estimate of

average optical extinction length of the atmosphere (measur-

ing light absorption related to suspended volcanic aerosol). For

ideal conditions, IVI values must be proportional to the amount

of optically active aerosol. An important feature of the IVI data is

that they are completely independent of the SMI data. Despite a

certainly limited accuracy in representing global explosive vol-

canism, IVI is its important and valuable indicator; thus it is

chosen as one of the objects of the present study.

It must be noted that neither VEI nor IVI are the perfect

measures of eruption size. In particular, IVI in principle cannot

not reflect even large lava eruptions: they produce no or low

stratospheric aerosol. Also, definition of “explosivity” included

in the determination of VEI may be an imperfect indication

of the total amount of products of a particular eruption. Even

in the better-documented cases, the choice still is not finally

resolved between size definitions based on mass or volume

of products. Still, the data sets we use are the best avail-

able.
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Fig. 1. Original data and selection of approximately complete data segments. (a) Data source SMI, data shown from 1700 with VEI ≥ 4, the selected period is

1820–1960, a data gap can be suspected during Napoleonic wars; (b) data source SMI, data shown from 1900 with VEI ≥ 3, the selected period is 1960–2003; (c)

data source IVI, data are selected with IVI ≥ 0.33 for the entire time period.

3.2. Preparing quasi-uniform subsets of the SMI data set

The SMI data set includes the eruption date (of variable accu-

racy) and the eruption size parameter VEI (“volcanic explosivity

index”). VEI reflects the amount of erupted products. VEI is

an approximately logarithmic measure of the size if eruption.

To form numeric representation of size, we use size param-

eter V = 10VEI. To represent numerically the cases when VEI

data were given as “4+” or “5+”, the size parameter was dou-

bled. Events with no month indicated were ascribed to July

1. On Fig. 1a and b one can see the present level of com-

pleteness of global volcanic data. Visual inspection suggests

selecting the following approximately complete data subsets:

VEI ≥ 3 since 1960 (event number N = 226, further denoted

SMI3), and VEI ≥ 4 since 1820. In order to have independent

data sets, the data set of VEI ≥ 4 events was limited by time

span 1820–1960; it consists of N = 72 events and further denoted

SMI4. Size–frequency distributions for the periods 1960–2002

and 1850–1960 (Fig. 2) are sufficiently near to power laws and

support these selections.

3.3. Preprocessing IVI data set

The original version of the IVI data set consisted of two lists

of yearly IVI values for 1400–1986 for each hemisphere, further

denoted as IVINH and IVISH. To obtain the global data set, these

two lists were merged. For years with non-zero records for both

hemispheres (related either to a single eruption affecting both

hemispheres, or to synchronized eruptions in each of them),

one must combine the two values in some way. Two evident

ways to do this are to take the maximum of the two values, or

to add them. The first way seems to produce underestimates;

and another may produce overestimates. As a trade-off solution,

the following global index (having no physical meaning, but

serving the limited aim of reasonable combination of two single-

hemisphere data sets) is further used:

IVIGL = (IVINH
2
+ IVISH

2)
0.5

(2)

Fig. 1c represents IVIGL values in time. The lack of tem-

poral uniformity of data can be easily seen as the paucity

of points in the lower-left part of the plot. Fig. 2 gives the

size–frequency distribution in the forms of a histogram and

of a cumulative plot. One can see that Eqs. (1a) and (1b) are

approximately valid within the IVIGL range from the largest

values down to IVIGL = 0.03–0.04, and then a clear tendency to

saturation is seen, indicating that the original IVI record tends

to become incomplete here. In the following, the subset of the

IVIGL sequence with IVIGL ≥ 0.033 is analyzed, further denoted

merely IVI. It contains N = 146 non-zero yearly IVI records. As

an event size measure V, the value of IVI was used directly.

In reality, more than one eruption could contribute to a sin-

gle IVI value; this kind of distortion was inevitable with these

data.

Many of the yearly IVI records form continuous chains

extending for two or more years. Some of them must be related

to the slow settling of aerosol, while others, and especially

those with the length of 3 years and more, seem to reflect real

sequences of eruptions in successive years. To be on the safe

side, in the data analysis a technique will be applied that per-

mits one to accurately cut off the contribution to clustering over

short time intervals. A particular value of the shortest delay

that is permitted to have effect on our results is selected as 3

years.
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Fig. 2. Size–frequency relationship for data sets IVI, SMI3 and SMI4. (Left column) Histogram-like plots, with bar height proportional to log event number in a bin,

see Eq. (1b). (Right column) Cumulative plots, proportional to log cumulative event number (related to complementary cumulative distribution function), see Eq.

(1a). Lines are linear fits; their slopes are the estimates of b-values given on the graphs. The vertical dash line shows the cutoff value of IVI, equal to 0.033. Only the

IVI values above the cutoff were included into the histogram and into the calculation of b-value. Note an acceptable fit of distributions by the law (1).

4. Event rate variation and common clustering

4.1. Procedures of analysis

There are many ways to reveal multi-scaled event rate

variations, e.g., variogram analysis (Jaquet and Carniel, 2001)

or multifractal analysis (Godano and Civetta, 1996), but we

needed one that would permit us to go around the problem of

short time intervals, that complicates the analysis of IVI data set.

The presence of correlation at small time intervals is a result of

finite aerosol settling time; this signal must be screened. For this

reason, spectral analysis of a data sequence was applied, so that

probably biased spectral components could be simply filtered

out. The sequence of event dates was represented as a function

of time consisting of identical spikes (delta-like pulses) of unit

amplitude. This data representation is denoted symbolically

as 1(t). In the case of uniform event rate (purely random or

Poisson process), mean power spectrum P(f) of a 1(t) function

is constant (“white”). In the case of periodicity, spectral spikes

appear. In the case of self-similar bursts of event rate, P(f) is

power law or hyperbolic one (P(f) ∝ f−α, with α values typically

between 0 and 1.5. This case is known as “pulse flicker noise”

with “pink” power spectrum (“pink” because of enhanced

low frequencies). In a multifractal context, 1 − α is equal to

the correlation dimension Dc = D2. To detect a pink spectrum

in real data, one must test the hypothesis “α > 0” against the

null hypothesis “α = 0”, that corresponds to flat (“white”) P(f),

Dc = 1 and the lack of fractal clustering. A usual approach is to
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select a set of particular frequencies fi; and to find, for each fi,

the estimate Pe(fi) of spectral density P(f) in the neighborhood

of fi by averaging the observed power spectrum Po(f) (peri-

odogram of data) over a frequency window centered at fi. Then,

specifically for the assumed power law spectral shape, linear

regression of log Pe(fi) versus log fi is then performed, and the

slope of the regression line provides the estimate of −α. This

approach, however, performs badly at lowermost frequencies

where important information regarding scaling of the spectrum

is located. An alternative approach (Pisarenko and Pisarenko,

1991) is to integrate Po(fi) numerically, obtaining the integrated

power spectrum IPo(fi). In the case of power law spectrum, IP(f)

behaves as f−α+1 = f−α′

. When analyzing scaling behavior of

the spectrum, it is useful to equalize the relative contributions to

the result of different frequency bands that cover the logarithmic

frequency axis. A typical example of this approach is to use

octave bands. We need denser grid, and actually use three points

per octave, or ten points per decade. Ideally, we would like to

estimate the integrated spectrum IPo(f) at points fj that form a

geometric progression fj+1 = afj, with the ratio a = 1.259 = 100.1.

This aim cannot be realized literally however because our raw

spectral estimates Po(fi) are located at certain frequency points

fi that are separated by a fixed frequency step 1/T, and form

arithmetical progression. Thus, out of the set of points fi we must

select a subset fj that is near to geometric progression. Then,

linear regression is performed with pairs {log fj, log IP(fj)}. The

actual set of frequency points used can be written as fj = (1/T)

{1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 25, 32. . .}. Regression delivers

the estimate of α′ = α − 1 and therefore of α. It should be noted

that in empirical discrete IP(fj) functions, the accuracy of the

first one to two points is inevitably very low; thus even marked

deviations of these points from the straight regression line are

tolerable, and cast no doubt on the validity of linear regression.

The estimate of α must be accompanied by error bounds (or,

better, by distribution density) that would permit one to formally

test the hypothesis “α > 0”. To produce these error bounds ana-

lytically is not straightforward even in the asymptotic case of a

very large data set; in the case of a real small data set it is a diffi-

cult task. To overcome this problem (relevant not only for the α

parameter), Monte-Carlo estimates of distributions of analyzed

parameters for the case of null hypothesis are systematically

used in the following. To obtain these, the actual temporal struc-

ture of events is substituted by many copies of a randomized one.

Sets of artificial event dates (“surrogate data”) are generated as

realizations of Poissonian sequence, and each surrogate data set

is processed using the same procedure as one applied to real

data. Empirical distribution function of α estimates determined

on the basis of 1000–10,000 realizations of a data sequence with

true α = 0 approximates the α distribution for the case of the null

hypothesis. To determine the significance level of the hypoth-

esis α > 0, the value αob obtained from observed data is used

as a boundary value, and the empirical distribution function is

integrated from αob to infinity, resulting in the estimate of proba-

bility of realization of the event α > αob on the condition that the

null hypothesis is true; by definition this is the significance level

Q for the hypothesis in question (“α > 0”). Traditionally, round

critical significance values for Q are selected like 1%, 2.5%, etc;

in our case a value of Q is the output of our procedure and does

not take any preferred values. Additional use of Monte-Carlo

simulation is the determination of bias in numerical estimation

of α caused by small sample sizes (it could reach 0.07–0.09 for

the case SMI4 with only 74 events), the resulting estimates of α

were adjusted to compensate for this bias. See Gusev (2005) for

more detail.

Generally, spectral analysis of data is a standard tool to reveal

periodicity. A clear 76-year cycle was detected by Ammann and

Naveau (2003) after special preprocessing was applied to the

same data sets (IVINH and IVISH) as studied here. The present

analysis did not reveal any marked periodicity.

After this introduction let us consider individual data sets.

4.2. SMI3 data set

On the size-time graph of this data (Fig. 3a), one can see,

in particular, the sequence of event dates. These dates look to

be distributed somewhat non-uniformly, but it is not clear how

improbable is to obtain a sequence of similar appearance by

purely random dispersion of points along the time axis. For

spectral analysis applied to possible common clustering, a dis-

crete fine time scale was used with a small arbitrary time step of

T/2048, and discrete Fourier transform (DFT) was performed on

2048 points. On Fig. 4a one sees the integrated spectrum IP(f)

that can be approximated by a straight line with the slope 0.92.

In corresponds to slightly pink noise, indicating some tendency

to clustering of event dates. The estimate of α equals to 0.08.

The significance check was performed for the frequency range

0.25–10 year−1 (period range 40–0.1 years, the shortest period

selected according to the typical time accuracy of SMI3).

The formal significance level Q for the hypothesis “α > 0”

was derived from the Monte-Carlo simulation explained above.

(See Table 1 for significance values related to all kinds of spec-

tral analysis.) Among 5000 surrogate data sets, as many as

686 produced α > 0.071; thus the average significance level is

approximately Q = 686/5000 ≈ 14%. Thus, although the event

rate shows some clustering tendency, its significance is marginal.

4.3. SMI4 data set

On the time–size graph Fig. 3c, one can notice groups of

points, but formal analysis based on Fig. 4d, indicates that

the clustering tendency is actually not definite. The basis for

selection of the upper frequency equal to 0.1 year−1 (period 10

years) is discussed below. For the hypothesis “α > 0” Q = 27% is

obtained, so the hypothesis cannot be accepted reliably. Quali-

tatively, estimated α = 0.16 agrees with the idea of clustering.

4.4. IVI data set

On the time–size graph (Fig. 3e) one notices rather clear

non-uniformity of event dates. On Fig. 4g the regression line

is seen for the integrated spectrum, plotted and analyzed only

for frequencies below 0.333 year−1. In this manner, all possible

contributions of inter-event delays shorter than 3 years are cut

off, so that even a 2-year aerosol staying in the stratosphere can-
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Fig. 3. Distrubutions of event sizes in time (a, c and e) and as a function of sequential event number (b, d and f), for data sets: SMI3 (a and b), SMI4 (c and d) and

IVI (e and f).

not imitate the analyzed episodicity. One can see that integrated

spectrum corresponds to slightly pink noise, with the estimate

of α equal to 0.13. Monte-Carlo estimate for the formal sig-

nificance level Q for the hypothesis “α > 0” equals 10% again

indicating a noticeable tendency to “common” clustering.

5. Order clustering

5.1. Procedure of analysis

As was explained above, “order clustering” is the clustering

tendency as observed in the time-ordered list of event sizes. This

list is treated as a discrete function of sequential event number,

this function is denoted symbolically as V(i). Again, spectral

analysis is applied to this function. To make frequency scales on

the spectral plots approximately comparable, the integer “dates”,

denoted i above, are multiplied by the value of an artificial time

step, equal to the average inter-event interval. (This modification

is irrelevant for the formal analysis of significance.) The result-

ing time scale is denoted as t*. The argument of the Fourier

transform of V(t*) is denoted f*. Now consider the function V(i)

(or V(t*)). When the sequence of sizes is random, V(t*) is a

white (non-Gaussian) noise, whereas when the order clustering

is present, V(t*) is intermittent. Moreover, when clusters have

no preferred scale on the t* axis (what is highly probable), V(t*)

may be a pink noise. To reveal its presence, the approach devel-

oped above with respect to the event rate analysis can be applied,

with the following minor modifications. The first change, a tech-

nical one, is that when analyzing V(i) a DFT on N points is used.

The analytical technique described for the case of P(f) is then

applied: the V(f*) spectrum is integrated obtaining IV(f*); then,

the value of α in the relationship IV(f*) ∝ f−α+1 is estimated by

linear regression of log IV(f*) versus log f*. As a final step, the

significance level for the hypothesis “α > 0” is checked by a

Monte-Carlo approach with surrogate data. In this case, in order

to generate surrogate data sets with no temporal structure, it is

useless to perturb times of events (they are fixed); instead, the

time-ordered list of event sizes is randomly shuffled many times.

5.2. SMI3 data set

To determine the significance of order clustering, the just

described procedure is performed, see Fig. 3b for size–number

plot and Fig. 4b, for the log IV(f*) versus log f* graph. The shape
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Fig. 4. Integrated power spectra IP(f) calculated from IVI, SMI3 and SMI4 data sets (dots). Left middle and right columns corresponds to “1(t)”, “V(i)” and “V(t)”data

sequences, respectively. Middle column corresponds to the time–size plots of Fig. 3(b, d and f). Right column corresponds to the sequences of Fig. 3(a, c and e).

Dashed lines, with slope unity, are for the reference case of “white” power spectra (P(f) = const ∝ f0, IP(f) ∝ f1) that have no temporal structure. Solid straight lines

are power law fits of calculated spectra. Circles are data points excluded from linear fitting, see text for clarification. Units on vertical scales are arbitrary.

Table 1

Spectral slope parameter α and related parameters, estimated through integration

of observed power spectra

Processing mode α Dc σ(α) Q (%) Qst (%)

Data: SMI3, N = 226, V = 10VEI, fup = 10 year−1

1(t) 0.08 0.92 0.06 14 15

V(i) 0.22 0.78 0.09 2.1 2.5

V(t) 0.08 0.92 0.05 5.9 10

Data: SMI4, N = 72, V = 10VEI, fup = 0.2 year−1

1(t) 0.16 0.84 0.23 27 –

V(i) 0.43 0.65 0.30 11 15

V(t) 0.20 0.80 0.20 16 20

Data: IVI, N = 146, V = IVI, fup = 0.33 year−1

1(t) 0.13 0.87 0.09 6.7 10

V(i) 0.16 0.84 0.12 8.9 10

V(t) 0.19 0.81 0.09 1.7 2

Average over data sets

1(t) 0.09 0.91 0.050

V(i) 0.20 0.80 0.072

V(t) 0.11 0.89 0.044

α, estimated exponent of the power law in the power spectrum; Dc = 1 − α, esti-

mated correlation dimension; σ(α), rms deviation of the α estimate; Q, calculated

significance level for the hypothesis α > 0; Qst, same, rounded up to a traditional

standard level; dash: the case of no significance.

of the integrated spectrum is well described by a straight line,

and its slope of 0.78 < 1 indicates a clear tendency to cluster-

ing. Deviations of the first two points can safely be ignored,

as was mentioned above. For numerical results see Table 1.

The obtained significance level is Q = 2.1%, suggesting that the

hypothesis of multi-scaled order clustering agrees with the data

reasonably well.

It must be noted, however, that to obtain this seemingly con-

vincing significance level, it was important that the 1991 doublet

eruptions (Pinatubo and Cerro Leon) are specified as having

VEI = 5+, not 5, and ascribed, correspondingly, an increased

value of “size” V. If the components of this close group (rep-

resenting the only two VEI = 5+ eruptions of 1960–2002) were

considered as having VEI = 5 (making all five largest eruptions

of 1960–2002 equal to one another), the significance level would

change to much less impressive 17%, still indicating that this or

larger degree of order clustering can appear purely randomly

only once in six cases.

5.3. SMI4 data set

The V(i) graph (Fig. 3d) shows one clear but relatively

long 1883–1907–1912 cluster (Krakatau, Santa-Maria, Katmai)

and no compact clusters. The spectral shape (Fig. 4e) deviates
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from unity only below the frequency of 0.2 year−1 (“periods”

1/f* above 5 years). At higher “frequencies”, the spectrum is

white, and the general spectral shape is curved. Therefore,

only the presence of clustering can be checked in this case;

but the assumption of self-similar clustering behavior is not

supported by these data. To test the hypothesis of clustering,

the analysis was limited only by “frequencies” f* < 0.2 year−1.

For this frequency band, α = 0.43 with very low accuracy, and

Q = 11%; thus, order clustering is expressed, but only moder-

ately.

5.4. IVI data set

On Fig. 3f one sees the V(i) graph that shows evident bursts

suggesting the presence of order clustering. The log IV(f*) ver-

sus log f* graph of Fig. 4h is analyzed for “frequencies” below

f* = 0.33 year−1; in this way possible bias related to small time

intervals is suppressed. Over this band (in fact, in a wider

band), the spectral shape is well approximated by a straight

line (of slope 0.84), making the assumption of self-similarity

of clustering reasonable in this case. Based on the obtained sig-

nificance level Q = 9%, one can conclude that the hypothesis of

self-similar ordered clustering is reasonably supported by the

data.

6. Burst-like discharge of volcanic products

6.1. Procedure of analysis

To study VDR, the data sequence was represented as a time

function consisting of spikes (delta-like pulses), in the same

manner as with common clustering, with the evident change

that a spike has now the amplitude equal to event size, instead of

unity. The result is denoted as V(t). To destroy temporal structure

when generating surrogate data, both mentioned randomiza-

tions are now made: actual dates are substituted by a Poisson

sequence, and the time-ordered event list is randomly shuffled.

All other steps are as before.

6.2. SMI3 data

See Fig. 3a for original data over time axis and Fig. 4c for

the spectral shape and regression line of log IV(f) versus log f

dependence. The observed spectrum is well fit by a straight line,

whose slope indicates pink noise with α = 0.08. The Q value is

6%, suggesting that self-similar episodic behavior of VDR is

probable for SMI3 data.

6.3. SMI4 data

For this data set (Fig. 3c), similarly to the case of the anal-

ysis of V(i), the episodic behavior for VDR is suggested by

the spectral shape (Fig. 4f) only for sufficiently low frequen-

cies (periods longer than 5 years). The significance level is not

convincingly low (only 16%), making the conclusion regarding

episodic behavior not fully reliable in this case.

6.4. IVI data

See Fig. 3e for original time structure of data. The observed

spectrum Fig. 4i is well fit by a straight line, whose slope indi-

cates pink noise with α = 0.19. The Q value is below 2%, thus,

the reality of episodic behavior of VDR is well supported by the

data in this case.

7. Correlation in time between common and order

clusters

7.1. General approach

It was noted above that the relationship between degrees of

expression of common clustering (=event rate variations), order

clustering and VDR variations suggests that the two first phe-

nomena may act cooperatively to enhance the third one. It was

also noted that this idea of “cooperation” can be checked consid-

ering the relationship between event rate variations and b-value

variations. In particular, event rate maxima, or common clusters,

must coincide in this case with groups of larger-sized events, and

such groups must cause the local b-value to be low. Therefore,

the hypothesis of “cooperation” predicts negative correlation in

time between event rate and b-value.

To implement the described idea, the following technique of

data processing is used. The time-ordered list of N events is cut

into a sequence of K packets, each containing the same fixed

number M of events. (A few events in the end of the list that

do not form a complete packet are dropped.) The duration of

ith packet equals dti, i = 1, 2, . . ., K. For ith packet, the local

event rate estimate is evidently λi = M/dti, and the local b-value

estimate by maximum likelihood (Aki, 1965) is

bi = log10 e

[

(Σi log Vi)

M − log V0)

]−1

= log10 e[m̄ − log V0)]−1
=

(3)

where Vi denotes the size of ith event, V0 is the lower threshold

used in Vi selection, and m̄ is the average logarithm of event

size in the data subset, further called “average magnitude”. In

the analysis of correlation between λi and bi, one meets with the

tradeoff between the accuracy of λi and bi that requires large M

(and thus small K), and the accuracy of correlation coefficient

ρ that requires the opposite. In this situation, the near-optimal

choice is to select both K and M of the order of N0.5.

With very scarce data available, the results of such an anal-

ysis are prone to large statistical fluctuations. To reduce their

effect, two modifications are introduced. First, the number of

λi and bi estimates is doubled, by using 50%-overlapping of

packets. (That is, with e.g., M = 8, successive packets include

events with i = (1, 2, . . ., 8),(5, 6, . . ., 12,)(9, . . ., 16), (13, . . .,

20) and so on.) Second, the analysis is repeated with several

variants of M value. Additionally, it was found that with small

data sets, it is preferable to directly use the m̄ statistic and not

to convert it to b-value. Negative correlation between λi and

bi means positive correlation between λi and m̄i. (Intuitively

this is transparent: high event density is correlated to high aver-
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age log event size.) Then, correlation is analyzed between time

series λi and m̄i, both visually and through statistical testing.

We expected that ρ > 0, and tested this hypothesis against the

null one “ρ = 0”. Again, a Monte-Carlo technique with surro-

gate data sequences (made of uniformly distributed points with

shuffled size order) was applied to determine the significance

level.

Although this mode of data analysis is straightforward and

intuitively attractive, its detection power appeared to be poor

with the actual volumes of the data sets. Another, less transpar-

ent but more susceptible technique was also applied: b-values

were determined for two specially selected subsets of events

and then intercompared. The first subset included events that

are located in densely populated intervals of time axis; another,

oppositely, includes events from sparsely populated intervals.

To sort events according to the population type of their interval,

an estimate of density is associated with each event. For the ith

event, this density is estimated as the inverse of the time interval

ti+2–ti−2 between the two next nearest events. In this way, all

events were sorted into two subsets of equal size, and b-values

were determined for each subset. The critical parameter is the

difference between b-values of the two subsets. A Monte-Carlo

technique was applied again to test the hypothesis that among

two b-value estimates, the one that is related to denser intervals

has the lower of two b-values.

7.2. SMI3 data set

On Fig. 5a, the calculated sequences λi and m̄ ii for

packets extracted from the SMI3 data set are plotted as func-

tion of time (the time reference for a packet is its median

time), for M = 30. Visually, some positive correlation can be

noticed, and the estimate of ρ is positive (Table 2); still, it

is insignificantly different from zero. The alternative tech-

nique of dense/sparse population comparison (Fig. 6a, Table 3)

demonstrates its efficiency, indicating the presence of negative

correlation between b-value and event density at the significance

level of Q = 6%.

Fig. 5. Comparison of temporal trends of log event rate (solid lines and squares) and of “average magnitude” m̄ (dashes and diamonds), for data sets SMI3 (a), SMI4

(b) and IVI(c), estimated using event packets of constant number. See Table 2 for details. Plots for m̄ are shifted vertically for visual clarity. Horizontal dot lines

indicate approximate ±1σ corridors assuming no temporal variations.
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Table 2

Parameters of correlation between time series of event rate and “average mag-

nitude” m̄

Data set, its volume Packet size M ρ Q (%)

SMI3, N = 226 30 0.22 –

SMI4, N = 72 4 0.17 –

IVI, N = 146 6 0.53 0.3

8 0.46 2.6

10 0.33 13

12 0.45 7.2

14 0.26 23

16 0.46 11

Table 3

Comparison of b-values between event subsets that occupy time intervals with

low and high event rate

Data set n0.5 dtl (year) bl dth (year) bh σ(b) Q (%)

SMI3 113 0.27 0.73 0.11 0.63 0.064 5.8

SMI4 36 2.8 0.66 1.01 0.55 0.10 13

IVI 73 6.08 1.84 1.89 1.18 0.18 0.04

n0.5, volume of each of the two data subsets; dtl and bl, average inter-event

interval and b-value estimate for low-rate intervals; dth and bh, same, for high-

rate intervals; σ(b), rms deviation of b-value estimate; Q, significance level for

the hypothesis bl > bh, obtained by Monte-Carlo simulation.

7.3. SMI 4 data set

The results of correlation analysis are shown in Fig. 5b,

and Table 2. Although a marginal significance level was indeed

attained for the presented case with M = 4, this result is unsta-

ble at other M and must be considered unreliable. The test with

dense/sparse population comparison (Fig. 6b) has no adjustable

parameters, so the similar value of significance level obtained

in this case can be considered meaningful, and the presence of

correlation can be considered as being marginally supported by

the SMI4 data set.

7.4. IVI data set

The results are shown on Fig. 5c, for M = 16. In this case, the

pair of estimates (ρ = 0.57, Q = 5%) was obtained. In Table 2,

results are listed for this several other values of M. One can

see that the inequality ρ < 0 takes place in a wide range of M

values, making the reality of this hypothesis rather probable.

Still, the values of Q vary markedly. However, by compar-

ing b-values for dense and sparse populations (Fig. 6c), this

result is confirmed rather reliably, at as low a Q value as 0.03%

(Table 3).

8. Comparative review of results obtained by various

methods

Let us now consider the results of various ways of data anal-

ysis. Let us begin with three modes of spectral analysis applied

to three data sets, as seen in Fig. 4 and Table 1, viewed as

a whole. One evident observation is that the results for the

SMI4 data set are, generally, the least convincing. This could

be expected: this data set is the smallest in volume, and, con-

taining older data, more prone to problems of calibration and

completeness. Thus, one can give less weight to results obtained

from this source. Now let us pass to more interesting general-

izations.

The first point to note is the difference in the degree of expres-

sion of common and order clustering. The expression of common

clustering is the weakest: it is observed (at significance levels

14% and 7%) only in two cases out of three, and the α value (here

denoted αCCl for this case) averaged over three cases, equals

0.09. (Averaging of α values is performed with weights based

on standard deviations σ(α) of Table 1; an additional weight

factor 0.25 was used with SMI4 data obtained over a narrow

frequency band.) Order clustering is the most prominent: it is

clearly expressed in each of three cases (at significance levels

2.1%, 11% and 9%), and the α value (denoted αOCl) averaged

over three cases, equals 0.20. As for episodicity of VDR, this

feature is expressed approximately as well as order clustering,

at significance levels of 6%, 16% and 1.7% and with average

αVDR = 0.11.

Generally speaking, each of the two kinds of clustering may

alone cause significant episodicity of the VDR. Their correlated

action, suggested by the analysis of b-value, can be expected to

Fig. 6. Cumulative plots of size–frequency distribution for data sets SMI3 (a) SMI4 (b) and IVI (c), separately for events on time intervals with lower and higher event

density (see Fig. 2 for analogous plot for non-split data). In inserts: histograms (simulated probability density functions) of the difference of b-value between lower

and higher event density intervals, obtained in 10,000 runs of random/surrogate data sequences with no λ–b correlation. Star marks the position of the difference

estimates from real data. Sum over black bins makes the significance level; see Table 3.
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result in αVDR being larger that any of αCCl or αOCl. This inequal-

ity is observed indeed for the IVI data set, but is not the case for

both the SMI3 and SMI4 data sets. This is probably the result of

statistical fluctuations in our small data sets; with sufficient data,

one can seemingly expect that generally, αCCl < αOCl < αVDR.

The tendency of negative correlation between b-value and

event rate, when analyzed in terms of correlation coeffi-

cient between “average magnitude” and event rate time series,

presents difficulties of detection: it is seen clearly in only one of

the three cases studied (Table 2, Fig. 5). The specially designed

statistical technique of comparing b-values of dense and the

sparse populations (Table 3) performs much better, showing

the presence of correlation at significance levels of 6%, 14%

and 0.03%. These consistent results obtained from indepen-

dent data sets seem to support the idea of correlation between

time histories of common and order clustering. This correlation

strongly suggests that common and order clusters are controlled

by one and the same factor, causing them to be positively cor-

related.

9. Discussion

9.1. Fractal episodicity versus alternative models

The results listed above suggest that random fractal clustering

is present for global volcanic sequences, most clearly as order

clustering and bursty VDR, and less prominently as clustering

of event rate. Event rate is the most advanced field of study,

with many alternative models proposed; see discussion in the

Introduction. One can treat the observed variations of event rate

as a manifestation of a point process with time-dependent event

rate (deterministic or random). For the cases when random cor-

related temporal structure is assumed, also various assumptions

can be made. Above, the variogram of the analyzed process was

implicitly assumed to be the power law one; other variogram

models are also possible. Alternatively, one might show that

time delays between events are power law or Weibull law dis-

tributed. On the whole, there are many modes to analyze the same

data, and their non-trivial temporal structure can be expressed

in a number of ways. How unique is the way of data descrip-

tion proposed here, and why is the actually employed approach

preferable?

The discrimination between various alternative models can

be very difficult, and essentially hopeless in the cases under

study, with data sets of the size 100–300 events. Thus, there

is no hope to obtain a unique model; and to select a particular

model for the data sets studied here is, to a substantial degree, a

matter of conceptual preference. To justify the actual choice of

the model it can be noted that it is based on the very general frac-

tal concept, and has only one adjustable parameter (namely, α).

And in terms of this single parameter (with different values) one

can describe not only the event rate model (“1(t)”) but also two

more models—for the volume list (“V(i)”), and for VDR func-

tion (“V(t)”). It must be understood that nothing like a proof is

possible to substantiate our particular choice. However, success-

ful data description by means of the selected model gives it a

certain support.

9.2. Lack of general understanding of fractal/flicker noise

phenomena

Before discussing the possible volcanological meaning of

results, some general preliminary notes should be given. Despite

the fact that fractal objects, and particularly fractal temporal

behavior, was a field of very intensive study in the last 20 years,

practically all this study was aimed at description of observa-

tions; only limited and not very fruitful efforts were directed to

explanations of such behavior. The same comment is true with

respect to the field of flicker noise. Among attempts to explain

these phenomena, the one seemingly most publicized is the con-

cept of self-organized criticality (SOC) and its incarnation in the

popular “sand-pile model” (Bak et al., 1987; Bak, 1997). Unfor-

tunately, the initial hope that a mathematical sand pile generates

avalanches that represent a pulsed flicker noise happened to be

premature: spectral representation of the output of a “simple”

sand-pile is white noise (Milotti, 2002). Of course, in the gen-

eral field of SOC and fractals, there are models that do generate

flicker noise, but these models typically either include special

assumptions that insert some memory in the system, or they find

flicker noise in the evolution of intrinsic parameters and not in

the output of the system. The origin of flicker noise in the output

of a natural system continues to be a first-class enigma in modern

physics. And it would be unusually lucky to find a good expla-

nation of presumed fractal clustering/flicker noise behavior in

the specific field of volcanic phenomena.

9.3. “Global magma plumbing system”: its existence and

hierarchy

Sigurdsson (2000) notes that episodicity of VDR (over geo-

logical time scale) is a significant fact but do not propose any

explanation. As seen from the previous paragraph, experience

from other fields of science is also not encouraging. Neverthe-

less, some speculations seem to be warranted. The revealed facts

can be discussed in terms of properties of a hypothetical “global

magma plumbing system” (GMPS), considering it as a certain

material supply system. It has an output, in the form of erup-

tions, and it has much less transparent input, that must include

subduction-related fluid injection, and/or the inflow of silicate

liquid from deep interior, etc. The assumption suggested by the

presented results is that despite the fact that the GMPS consists of

many spatially distant and seemingly completely hydraulically

isolated subsystems, it is capable of synchronizing the opera-

tion of these subsystems. If this is so, there are two very general

possibilities: either the synchronism is a manifestation of a com-

mon “central” controlling factor or a single unifying mechanism;

or it is a distributed feature that is related to a certain positive

interaction between volcanic regions/subsystems. Any of these

two variants may result in seemingly “cooperative” (“epidemic”)

mode of behavior.

Within the fractal conceptual framework, one can expect to

meet a down-scaled version of this global system at the regional

scale, to be manifested in a region-wide “cooperative” behavior

of volcanic activity of individual volcanic centers. Recently, the

Kamchatka region was shown to be a particularly good example
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of such an influence (Gusev et al., 2003). All three modes of

behavior discussed here for global data, namely, common and

order clustering and episodicity of VDR have been found for

the catalog of explosive eruptions on Kamchatka over a 10,000

years time span. Moreover, for these data, order clustering was

again much more clearly expressed than common clustering.

Pelletier (1999) proposed some mechanisms, acting at “roots of

volcanoes”, that might result in space–time clustering of vol-

canism at a local to regional scale. However, these models are

hardly applicable for the case of global activity.

An alternative statistical model can be imagined that ascribes

clustering property of global event sequences to summation of

independent but intrinsically clustered sequences from individ-

ual volcanoes. This explanation is formally correct, e.g., for

event sequence represented as non-homogeneous Poisson pro-

cess with random event rate Λ(t). Indeed, assume Λ(t) to be a

sum of many independent components λi(t), each of them being

an independent flicker noise of a certain exponent α. Each such

noise can be considered as white noise passed through the filter

f−α/2. Consider a long time segment T ≫ max(1/λi(t)). Let us

Fourier-transform Λ(t) and λi(t) over T, to result in spectra Λ(f)

and λi(f). Then

Λ(f ) =
∑

λi(f ) =
∑

f α/2wi(f ) = f α/2
∑

wi(f )

= f α/2W(f )

where wi(f ) and W(f) are Fourier transforms of white noises.

We see that Λ(t) is a flicker noise again. Models of this kind can

be imagined also for order clustering and clustering of VDR, as

well as for correlated behavior of order and common clustering.

It must be understood that through the discussed model, an

attempt is made to explain by coincidences a very clear phe-

nomenon. For example, during only 5 months in 1991, the two

largest, VEI = 5+, eruptions of 1960–2002 took place (Pinatubo

and Cerro Leon), separated by a single VEI = 3 event, making

the local b-value estimate very low. Attempting to explain this

fact by random coincidence of maxima in two unobservable

independent b(t) functions for these distant volcanoes does not

look reasonable. Similarly, to explain global correlation between

common and order clustering one needs to introduce correlated

variations of λi(t) and bi(t) for each volcano. Although this sur-

prising tendency seems to exist globally, it is highly doubtful

for an individual volcano: it means that the larger are eruptions

of a volcano, the more frequent they are. On the whole, the

concept of summation of many independent flicker noises looks

highly artificial. This however is a matter of opinion. A more sig-

nificant counterargument can be based on the well-established

facts that clustering behavior is not merely a temporal phe-

nomenon, it is actually a spatio-temporal one, demonstrated

over spatial scales from tens to several thousands of kilome-

ters (Condit and Connor, 1996; Pelletier, 1999). The observed

space–time correlation definitely contradicts the idea of indepen-

dent event fluxes that predicts no correlation between time series

for non-intersecting sub-areas. Hence, explanations of obtained

results based on random coincidence of intrinsically clustered

single-volcano sequences are not considered plausible and are

not discussed more.

9.4. “Global magma plumbing system”: what we

understood about its properties

Now let us consider some primitive variants of possible

behavior of the GMPS. Imagine a hypothetic GMPS whose

average input rate is a certain continuous, constant or weakly

oscillating function of time. As for the output of GMPS, we

know that it consists of short pulses or eruption events. Assume

also that the total volume of the GMPS is limited. Then, the aver-

age throughput of the system (in the assumed stationary mode

of operation) must be weakly varying as well. Now assume that,

for some reason, the mean output event rate varies in time (thus,

the common clustering is assumed). To fulfill the constraint of

a constant throughput, during the intervals of maxima of event

rate the average event size must be relatively low. Conversely,

when events are infrequent, their size must be relatively large.

This is schematically shown on Fig. 7 as Case A. In such a case,

large events do not occur in random order but (1) inevitably

form groups, and (2) these groups coincide with periods of

low event rate. Therefore, order clusters arise automatically in

this case, but they arise in antiphase with respect to common

clusters.

For the alternative ideal model (Fig. 7, Case B), assume that

the input to the GMPS (still with limited volume) is in itself a

deeply non-stationary, “bursty”, but still continuous time func-

tion. The near-surface volcanic conduits must let pass through

these bursts, converting them into individual pulses. Generally

speaking, these conduits can use the following strategies to pass

an arriving burst of material: (1) to increase eruption rate, keep-

ing mean eruption size constant; (2) to increase mean eruption

Fig. 7. A sketch showing two hypothetic modes of behavior of the global magma plumbing system. (Top) The case of modestly varying input material rate and

the limited volume of the plumbing system proper; the output discharge pulses are frequent when they are small, and rarified when they become larger; negative

order clustering results. (Bottom) Wildly varying input material rate and, again, the limited volume of the plumbing system proper. In agreement with observations,

discharge pulses are larger when they are more frequent, and positive order clustering arises.
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size, keeping eruption rate constant; (3) to combine strategies (1)

and (2). Strategy 3 looks the most probable, making common

clusters and order clusters likely to arrive in phase. And this is

just what we observe in volcanic event catalogs: “average mag-

nitude” is positively correlated with event rate. This speculation

suggests the real GMPS may be fed in an intermittent manner.

One can also imagine that the GMPS is of effectively infinite

volume, and also is capable to convert the approximately sta-

tionary (constant rate) input into episodic, intermittent output.

Generally, this reasoning is as acceptable as the previous one,

However, it does not give us anything essentially new: such a

“big” GMPS can be logically separated into the first, volumi-

nous and burst-generating stage, and the second stage of limited

volume that is equivalent to the entire GMPS considered in the

previous paragraph.

Of course, this speculation does not take us too far; but two

interesting deductions still follow. First an important conclusion

is that the GMPS seems to exist, a conclusion that is very far

from being evident.

The second corollary is that the complete system that con-

sists of the GMPS and its inputs as a whole has an inherently

intermittent behavior, and its volume is seems to be unlimited.

This formal deduction should not be understood literally: an

upper limit of volume of the GMPS must exist (see e.g., Mason

et al., 2004). When cluster size approaches this upper limit, the

clustering behavior must disappear.

9.5. On long-term memory

Often, flicker noise behavior, or pink power spectra, with

α > 0, are considered as long-range dependent or long mem-

ory processes (Beran, 1994), because correlation persists for

arbitrary long delays. In other words, clusters of any (includ-

ing very long) duration are present. (Often, processes with long

memory are characterized by the Hurst parameter H = (1 + α)/2.)

Over the time scales analyzed here, of 1–500 years, the above

results indeed can be interpreted in this way: global volcanic

processes do have long memory. Combining the results with

other published data, this conclusion can be generalized for

much longer time scales (e.g., up 108 years following Pelletier,

1999).

9.6. Possible applications

The obtained results are highly significant for understanding

the impact of volcanism on climate. The simplest approach in

analyzing this impact is to assume that individual eruptions of

variable size arrive as a Poissonian sequence, or maybe as a clus-

tered sequence with a finite, limited correlation time. Taking into

account fractal clustering, with long memory, can significantly

modify the estimates. An important point is that the easily per-

ceptible phenomenon of common clustering (clustering of dates)

may be of less relevance to climatic change than order clus-

tering (clustering of sizes) that seems to be more prominently

expressed.

The phenomenon of fractal clustering is significant also for

volcanic hazard assessment. Assume that for a certain volcanic

center, fractal clustering behavior can be expected. On a qualita-

tive level, this assumption means that the observed event rate or

VDR, even when it is based on apparently sufficient volume

of data (statistics of events, etc.), cannot be safely extrapo-

lated to future and used as a reliable estimate for future activity.

Changes of the current activity level, both to significantly lower

or to significantly higher levels, must always be considered as

realistic alternative scenarios. With some efforts, quantitative

approaches for such “non-stationary” scenarios can be devel-

oped.

10. Conclusions

From three independent approximately homogeneous data

sets, three kinds of volcanic eruption time sequences were con-

structed: (1) of events as unit-mass points on the time axis, (2)

of event volume versus sequential number in the time-ordered

list, and (3) of variable size events as massive points on the time

axis. Sequences of all tree kinds show indications of clustering

behavior, denoted in these three cases as (1) common clustering,

(2) order clustering and (3) clustering of volcanic discharge rate,

or VDR.

For two data sets out of three, the clustering behavior can

be considered to be self-similar (fractal). Spectral analysis has

shown that sequences from these two data sets can be considered

as flicker noises. For the three listed kinds of sequences, the

average values of power spectral exponent are equal to −0.09,

−0.19 and −0.11, respectively.

The hypothesis of positive correlation in time for common

and order clustering was checked by testing negative correla-

tion between time series of event rate and of b-value, or the

exponent in the power law for size–frequency distribution of

eruptions. Two techniques of statistical analysis of this cor-

relation were applied. The first of them was intuitively more

attractive but less efficient as a statistical tool; another showed

clear manifestations of the named correlation in all three data

sets analyzed.

Comparing the present work with earlier results, one can

conclude that order clustering, episodic/intermittent VDR, and,

to a less degree, common clustering may be characteristic

properties of volcanic process, both on global and regional

scales.

The obtained results give a reasonable description of data, but

do not give clear clues regarding causes of the revealed pecu-

liarities. One relatively certain conclusion, vague in details but

still quite radical, is that to provide the revealed coordinated

behavior of volcanic time series over entire Earth, some global

mechanism or mechanisms must exist.
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