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Abstract

Gusev, A.A. and Pavlov, V.M., 1988. Determination of space—time structure of a deep earthquake source by means of
power moments. In: O. Kulhinek (Editor), Seismic Source Physics and Earthquake Prediction Research.

Tectonophysics, 152: 319-334.

For a planar shear earthquake source with monotonous slip at a given point, power moments of the slip rate
function provide a useful means of reconstructing a space—time source structure. In theory, even a smoothed source
function can be uniformly estimated. Power moments are linear functions of the processed data.

We have developed a practical technique for estimating the source power moment of degrees 1 and 2 from the body
wave pulses of deep earthquakes. The technique is applied to a moderate (m, =5.7) event in the Fiji Islands. We
determined the source plane, elongation direction, length and duration values, degree of asymmetry and possible
rupture velocity. Most estimates are independent from any particular parametric source model, although the Haskell-Aki

partly bilateral model agrees well with our observations.

Introduction

In order to determine the space—time structure
of earthquake sources, different approaches have
been tried. The two most consistently applied are:
(1) determination of the parameters of some source
model of an a priori fixed functional form, and (2)
representation of the source as the superposition
of a number of simple subsources (point sources
or dislocations) by trial and error. Both ap-
proaches have demonstrated their usefulness. They
both have, however, one important disadvantage:
the functional form of the source or subsource is
fixed arbitrarily. Therefore, it would be useful to
consider another kind of approach, which would
be more or less free from a priori assumptions.
The approach presented here is of this kind; it is
based on specifying the source according to its
power moments.
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This kind of approach was first proposed by
Goltzman (1971), who suggested that an imagin-
ary elastic wave radiator be represented in seismic
prospecting by its set of power moments. Backus
and Mulkahy (1976a,b) used power moments to
describe a general seismic source. They mentioned
that power moments can be used to determine the
low-frequency component of a radiation field, but
they did not consider inversion. The present
authors (Gusev and Pavlov, 1978; Pavlov and
Gusev, 1980) derived equations connecting
space—time source power moments and time power
moments of body wave pulses. For a planar shear
source with a positive slip rate function these
equations allow us to determine, in theory, all
source power moments up to a certain degree K,
K depending on the quantity and accuracy of the
data available. It was also shown that with the set
of power moments up to degree K at hand, one
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can determine the smoothed version of the slip
rate function, thus completing, in a sense, the
inversion of a planar shear source. These results
are described in detail in Gusev and Pavlov (1982).

Based on the approach of Backus and Mulkahy,
Doornbos (1982a,b) determined source moments
of degrees 1 and 2 for a deep earthquake. Silver
(1983) derived equations for degree 2 moments,
and in Silver and Matsuda (1985) these moments
were determined for two surface focus earth-
quakes.

The present paper includes a summary of our
theoretical studies (Gusev and Pavlov, 1978, 1982;
Pavlov and Gusev, 1980) and an example of their
application (presented in greater detail in Pavlov
and Gusev (1986) and in Gusev and Pavlov
(19864a,b).

Three-dimensional source power moments and their
relation to body wave field

We shall consider the earthquake source model
of planar shear rupture. As the rupture plane is
not known beforehand, we shall also consider a
somewhat more general volume source model. Both
models are essentially scalar ones: volume or
surface seismic moment density at a point is de-
fined by the product of a constant tensor with the
scalar function of point and time. This model is
much less general than that of Backus and
Mulkahy (1976a,b), and it is clear that for some
earthquakes it will not be correct. We hope, how-
ever, that in many cases the main part of the
source motion of a real earthquake can be ideal-
ized by plane shear rupture. It should be men-
tioned that the approach presented here is appli-
cable to any planar source that can be decom-
posed as described above, e.g., tensile crack or a
dense planar set of dilatation sources.

So let us introduce two source models, A and
B. For model A, the source is located in the
limited volume V of a homogeneous elastic
medium, and is described by the volume density
of the seismic moment:

m,;;(t,x) = mf(j)-) (¢, x)

where i, j=1,2,3. x={x;, x,, x5} are the
Cartesian coordinates, ¢ is time, and m{) = m( is
the constant “unit” tensor: 3m¥m{? =1; the

summation convention is assumed here and below.
For model B, the source is a shear rupture in a
limited area S of a plane X with unit normal n,
with displacement jump (slip) function B(?, x) =
bf*(¢t, x). The direction of slip B is constant,
b-n=0, and |b|=1. Model B is a particular
case of model A when:

m =n;b, + nb,

fo(t, x) = uf(t, x)8s(x) 1)
where 85(x) is a surface Dirac delta function on
2 and p is the shear modulus.

We assume that the source process starts at a
fixed point, the hypocentre, and at a fixed mo-
ment in time, and we choose the origin of the
coordinate system at the hypocentre, and let 1 =0
for the moment when rupture begins. The process
does not leave V' (or S) and finishes at the mo-
ment ¢ = T. We shall also introduce an important
assumption concerning the monotonous increase
of plastic deformation or slip at a given point.
This assumption is plausible from a physical point
of view. We assume that it can be disturbed only
on a local scale and that this disturbance is negli-
gible. Formally our assumptions can be written as
follows (¢ = d¢/d1):

(1) f'=0 and f*=0atr<0
(2) f°=0 and f*=0at¢>T
(3) f°>0 and f*>0at0<t<T (2)
(4) f°=0 outsideV, f*=0
outside S

To introduce (normalized) power moments for
the source we use the function:

L(¢)= [ [To(t, x)f*(r, ¥) drav

Initial moments of degree 1 are defined as:
N,=L(x,)/L(1) (a=0,1,2,3, xo=t)
(3)
initial and central moments of degree 2 as:
N = L(x,x)/L(1)
N,g=NQ — N,N;
(a, 8=0,1,2,3, xo=1) (4)



For planar source, the functional L takes the
form:

L(¢)= [ ["o(r. x)f*(r, ) drds

In this case, some specific relations are true for
power moments, namely:

n;N;=0
ni]\,i():O (l, les 27 3) (5)
Nij=0

The value L(1) is identical to the usual scalar
seismic moment M,. It is convenient to introduce
notations: N,=N,, N,, =Ny, N, =N, (i=

3). The dimensions of the power moments are: N,
[s], N; [km], N, [s’], N, (km-s], N;; [km’]; from
these dimensions one can see the sort of moment
(space, time or space—time). Values N, and N,, are
scalars; the sets { Ny, N,, N3} and { Ny,, N,,, Ns, }
are vectors, and will be referred to as d and ¢
respectively. The matrix N;; (i, j=1, 2, 3) repre-
sents a symmetrical tensor.

Let u(z, r) be a far-field body wave (e.g., a
P-wave) displacement, produced by our source
and radiated along the ray r (| 7| =1). According
to our assumptions, the pulse shape of u is uni-
polar, with a definite beginning and end. Now let
us introduce power moments of u. For degrees 1
and 2 we have:

ef?(r) =ey(r)
= Eiftzu(t, r)(t—1,) dt

07

o : (6)
eP(r) = Eo-/r- u(t, r)(t—1)" de
©)

62=€2 —612

where E, = Ey(r) = [;?u(t, r)dt is the pulse
“area”, t; is the onset time and 7, is the end
moment of the pulse. It is clear that instead of u,
one can use the projection of vector displacement
onto any axis.

To connect pulse and source power moments,
let us write the far-field vector displacement u, for
an infinite homogeneous medium. For source
model A:

u, (¢, r)=Q,-fo”(t—R/c+x-r/c, x)dv  (7)
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where ¢ =c, or ¢ is the wave velocity, R is the
distance to the observation point, and Q, is a
factor which for a P-wave, for example, is equal
to:

Q;,= rrkm /477pc R

where p is the density. For both P- and S-waves,
Q; (which includes both geometrical spreading
and the radiation pattern) will cancel afterwards.
For subsonic rupture, R/c coincides with the
onset time ¢;, and this case will be presumed
below. Let us multiply both sides of (7) by (z —
R/c)*(K=0,1,2,...):

f°° u, (1, r)(t—R/e)" dr

— o0

B Q,/Vf_zfv(f, W)(r—x-r/e)drav  (8)

For K =0 in particular:

f:u,(z, r) dt= Q,fyfiof"(f, x)drdv  (9)

Now using the binomial theorem in the right-
hand side of (8) and dividing each side of (8) by
each side of (9), we obtain:

ORI

a+B+y+8=K
a>0,8>0,vy>0,8>0

AaBySP BYS (10)

where:

AQBYS=(—”1/0)B(_Q/C> (= r3/c) ',3' v5|

are the coefficients depending on r, and:
P =L(x§xfxIx3)/L(1) (xo=1)

are the power moments in general notation. In
particular, for K =1:

Prooo =No=N,,  Poioo =M,

for K=2:

Py =N = Nuo» Poo=NP=ND, ...,

Py =ND, Py o=ND,....

For K=1 and 2, (10) leads to:

Nz—r,-N,-/C=€1(r) (11)
— 21N, /c+rrN,/c* =e,(r) (12)

At a given K, eqn. (10) contains all source
power moments of degree K. Thus a system of
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such equations for different r taken in a sufficient
number would seem to be an adequate basis for
(linear) inversion. This is not the case, however.
The relation r2+rf+ri=1 makes the coeffi-
cients A,p,s in (10) linearly dependent in the
general case, and in this case the above system
degenerates.

For separate P or S data the solution in P,z.5
includes K(K?—1)/6 arbitrary constants, and is
unique for K=1 only. For combined P and S
data, it includes (K — 1)(K—2)(K— 3)/6 arbi-
trary constants, and is unique for K=1, 2, 3.
Problems of this kind were to be expected, as we
are trying to specify a 3-D function f” of x whilst
our information is about a 2-D function u of r.
When the source is assumed to be planar, non-
uniqueness of this kind disappears.

It is worth mentioning that in terms of Backus
and Mulkahy’s arguments (1976a,b), this non-
uniqueness arises because we try to calculate the
equivalent force at the source from surface ob-
servations, and not because we calculate the
seismic moment tensor density from the equivalent
force (only the latter cause was discussed by
Backus and Mulkahy).

The non-uniqueness discussed above is closely
related to the problem of non-radiating sources in
elastodynamics (scalar non-radiating sources are
discussed in Friedlander, 1973). For example, it
can be shown that a source with a seismic moment
density described by the function:

2
fur(t, x) = (ia_ - Vz)

¢35 0t*

w| L2

c ot?

where g is an arbitrary function, produces a zero
displacement outside the support of g. Hence if
we add the seismic moment density fyrz to any
source function, its external field will not change.
This obviously leads to non-uniqueness of in-
version from any data outside the source (not only
the far-field data). It can further be shown that
the sources localized on a plane (in fact, a wide
class of surface sources) cannot be non-radiating.
In order to eliminate non-uniqueness in the
planar case, one can add eqns. (5) to a sufficient

—vz)go, <)

number of equations (11) and (12) to obtain two
linear systems (for K=1 and 2) which do not
degenerate (this procedure is in fact successful for
any K). In practical inversion the source plane is
unknown beforehand and should be determined
simultaneously.

Planar source and its description

Let us consider now how the unknown source
plane can be determined. If the tensor m() is
known and corresponds to shear rupture, we can
assume that two versions of the plane are known,
and the true version must be chosen. Hence it is
useful to have a way to determine the plane inde-
pendently of mf?-). In order to do so, we shall
assume at first that the source is three-dimen-
sional, and then use conditions (5) to determine =.
Let us first consider a case where P and S data are
used simultaneously. Then we can determine the
second degree positively defined symmetrical
tensor N;; (i, j=1,2,3) analogous to a solid
inertia tensor or to a covariance matrix. Let us
find its eigenvectors and enumerate them in order
of decreasing eigenvalues. We denote eigenvalues
as Ni¥, N3, N34 and corresponding unit eigenvec-
tors as IV, 1@ I®_ For a general planar source,
one of the three eigenvalues must be zero, and for
a planar source with positive slip function, this
zero eigenvalue will always be associated with N,%.
So normal n to = coincides with I®. Another way
to determine n is, for example, to use the vector
product of vectors d and ¢q (see eqn. 5) which both
lie in 3.

When only P or only S data are known, an
arbitrary parameter is included in the values of
3-D source moments of degree 2. The following
values are determined unequivocally, however:

N,, N;;=N,;+ c>N,8,,

where §,; is the Kronecker delta.

For tensors N;; and N,;, the eigenvectors are
identical, and the decreasing order of eigenvalues
is the same; so, in this case, vector I®, coinciding
with vector n, can also be determined. It can be
stated that N, =c¢ >N, so the use of conditions
(5) enables us to avoid arbitrariness in the values

of 3-D moments of degree 2.



When the plane X is found, it is convenient to
rotate the initial coordinate system to coincide
axis x; with n. N; and all N, witha=3 or B =3
must now be equal to zero, and this condition can
be set in advance. Now the number of unknowns
reduces to 3 for degree 1 and to 6 for degree 2.
Power moments in this case will be referred to as
two-dimensional, and will be denoted by a bar
above them. They can be determined by the least-
squares technique from somewhat modified ver-
sions of eqns. (11) or (12). Modification includes
changing the coordinate system and exclusion of
all unknowns that must be equal to zero. For 2-D
moments, the (overdetermined) least-squares sys-
tem does not degenerate for any K. Formally, the
last step is excessive when we consider ideal data,
but it is very useful in real cases, and is even
formally necessary for the determination of high
degree moments.

The set of source 2-D power moments of de-
grees 1 and 2 is the main formal result of the
approach presented here, but for physical inter-
pretation some functions of these moments are
useful (see also Backus, 1977; Gusev and Pavlov,
1978, 1982). We shall list those values which
specify the space—time structure of the source in
our approach. The linear dimensions of a “static”
source (defined by the function f¥(co,x)) are
characterized by the mean square radii R;=
(N)%3 and R, = (N,%)%% source duration is
characterized by R,(N,)%°. These values corre-
spond to standard deviations in the theory of
probability. The centroid of a static source (with
respect to hypocentre) and the time centroid are
defined by vector d and by scalar N,, respectively.
The long axis of a static source is defined by IV,
and its aspect ratio by R,/R;. The direction of
source growth is defined by vector g. For an
elongated source, two simple measures of asym-
metry (unilaterality) can be introduced: “static”
x=d-1V/R /3 and “dynamic” A=gq-I'V/R,R,.
These values are normalized so that they are equal
to unity for the Haskell-Aki source—narrow rect-
angular dislocation with unilateral rupture, and
they vanish for any centrally symmetrical source.

The source dimension estimate using the R,
value is not always obvious, so some other esti-
mates can be used. The value 2R, gives the
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guaranteed lower limit of the dimension (along
IDY of the area where f* = 0. Value D, R, gives
the upper limit of the dimension of the area where
not less than a% of the total “mass” (that is,
seismic moment) of function f* is localized. This
estimate is an implication of the Chebyshev un-
equality in the theory of probability. For example,
at a« = 90%, D, = 6.32. Finally, a parametric model
can be used. In the case of the Haskell-Aki model,
the source length L, is 3.46 R,. The latter esti-
mate seems to be the most convenient when the
results of the present approach are compared with
those of computations based on parametric mod-
els.

Rupture velocity cannot be estimated in princi-
ple without using a parametric model as a refer-
ence. Let us accept for this purpose the Haskell-
Aki model with the partly bilateral rupture, which
starts at a distance d from the centre of a rectan-
gle and propagates with velocity v in both direc-
tions, with a step-like dislocation time function.
For this model, several estimates of v can be
derived, e.g., v, =V3(1+%>)R,/2N,, v,=(1+
6%x?—3%*)0.5R, /2R, or v;=%x(3 —%x*)R}/2N,,.

Several duration estimates can also be pro-
posed. Using N,, we can suggest R, and \/ER,.
The last value is the accurate duration estimate for
the purely unilateral or purely symmetrical
Haskell-Aki source. For the model described
above, another partly bilateral estimate can be
suggested: Ty =(d+ Ly/2)/v. As the rupture is
perfectly asymmetrical along the time axis, the
value 2N, can also be used to estimate duration.

Accuracy estimates for moment values can be
extracted by the least-squares technique. Values
N,;¥ and /[ depend nonlinearly on degree 2 mo-
ment values. For them, and for |d |, |¢| and unit
vectors along d_and ¢, a special Monte-Carlo type
procedure was used. For other values depending
on power moments, simple “error transfer” esti-
mates were used.

Inverse problem for a planar source

It has been shown above that for ideal observa-
tions, when the least-squares errors can be ne-
glected, the source plane = and all the source
power moments up to degree K (depending on the
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number of observations) can be found. It is obvi-
ously interesting to look at what can be inferred
from this information about function f*(z, x). It
is known (Kostrov, 1975) that the problem of
reconstruction of f=(¢, x) from the wave far-field
u(t, r)is not stable. Besides, an arbitrary function
cannot be approximated by any finite number of
its power moments. Hence, to be solvable, the
inverse problem has to be formulated in some
special way.

Let us consider the positive function ¢(z, x;,
x5)=fE(t, x;, X5, X3) (x5=0 is ¥) and, in-
stead of determining ¢, let us look at the problem
of determining the smoothed (low-pass filtered)
function ¢* =¢ * A (h is the smoothing kernel
(window), and * denotes convolution). Let the
3-D moments in the system (¢, x1, x5, x3) be
P,s,s (for planar source P,z ;=0 when 8 <0),
denote Pz, =P.p., and drop the prime from
x{, x5. For the Fourier transform ¢(w, k,, k,) of
(¢, x4, Xx,) the following formal series expansion
is valid:

~(‘°a ky, k )

M
— Z Z (—l)q ',8' 1
g=0 a+B+y=¢q
a,B,vy=0

(F==1} (13)

Let us consider the series in the right-hand side
truncated to the number K, and denote this trun-
cated series as ¢,(w, k;, k,). Function
¢ (2, xq, x,)1s not near to ¢(¢, x;, x,). For some
h “windows”, however, ¢ * h is uniformly near
to ¢ * h. Let us consider the simplest case when
the window provides equal relative resolution
along all three axes, ¢, x; and x,, and when the
window spectral shape h(w, k;, k,) is 3-D
“boxcar”’-shaped:

h(w, ky, k2)=H( |(;|)H(|]21|)H( |kcz|)

where:

wkBk)

1, éx1
m©={y &5
and parameters a, b and c satisfy the condition
aT =bL =cW = n, where n is the number of re-
solvable elements (“pixels”) along any axis, and

T, L and W are characteristic dimensions, which
are proportional to R,, R; and R, (e.g, T
=y/12R , and so on). In this case (in Gusev and
Pavlov, 1982), the simple upper limit for relative
accuracy was obtained for non-negative ¢:

* K+3 q
o= BT L [_ > u}
o} T

!
1, X1, X3 g=0 q:

Il

€ (n, K) (14)

where ¢ = M, /(nTLW). For given n, €, can be
made small if a sufficiently large K is chosen.
After simplifying (14), we get:

] (n K)< 2 ( 3en )K+4 (15)
o \7r3 277(K+4) K+4

So, for ¢, < 1, K should be greater than 3en — 4.

For non-ideal observations, when moments are

known with relative accuracy 8, a new estimate of

€ would be:

e<ep(n, K)+8n 3(e"—1)° (16)

The second term does not depend on K, and, for a
given K, can be made small only when & is low.
These results are practically independent of the
particular window function, if / decreases suffi-
ciently quickly at w — oo, k; = o0 and k, = 0.
Let us make some comments here. The initial
stability problem in the estimation of ¢ (or f%)
from u was related to the need to estimate the
spectrum ¢ in the whole space (w, k1, k,) from
its values given only in the neighbourhood of zero.
When we limit the problem and estimate the spec-
tral function only in the specified neighbourhood,
the problem becomes corrected, but only the low-
frequency component of ¢ can be reconstructed.
Numerical analysis of formulas (150) and (16)
shows that, with increasing n, the necessary accu-
racy 8 of moments (and seismograms) grows with
n exponentially, and the necessary maximum de-
gree of moments grows linearly. The necessary
number of observations for degree K is (K + 1)(K
+2)/2, i.e., it grows as a square of K. Numerical
estimates show that even for n=4 (total pixel
number is 4* = 64), values K=28 and § =2-10"*
are necessary, if we wish to know ¢* with an
accuracy of about 10%. The minimum number of
observations in this case is 435. It is clear that the



present theoretical results have little chance of
finding practical applications in the near future.
They are however interesting, in principle, and
could eventually lead to a more practical ap-
proach.

Determination of pulse power moments and seismic
moment tensor for a deep earthquake

In the rest of this paper we will demonstrate
the practical approach to the inversion described
in the first two sections. We should take into
account that our equations are valid, strictly
speaking, only for a homogeneous, unbounded,
perfectly elastic medium. We shall assume, how-
ever, that the usual technique for interpreting tele-
seismic body wave records of deep earthquakes is
applicable (e.g. Randall, 1972), that is to say, we
assume that P, pP, sP and S phases can be sep-
arated on the seismogram and that, after de-
convolution of the instrument and Q-operator,
they can be reduced to the focal sphere. We
neglect the effects of the layered Earth structure at
receiver and reflection points and consider the
wave front flat at the receiver. Note that in this
case we only need to account for free surface and
for geometrical spreading when finding the seismic
moment tensor; this is not necessary for power
moment determination.

We used records of body waves from the deep
earthquake of February 15, 1971 (depth H = 574
km, m,=5.7, t,=07h51m, ¢=2520°S, A=
178.41°E, Fiji Islands). Data concerning the sta-
tions and phases used are given in Table 1. The
records of phases P, pP, sP on vertical channels
and of S on horizontal channels of WWSSN LP
instruments were optically magnified and dig-
itized; SH records were computed. The digitiza-
tion interval was 0.1 s, and the data window was
50-70 s. The records were deconvolved for instru-
ment and Q-operator. To do this, the record spec-
trum was divided by the instrument transfer func-
tion and by the medium transfer function P(f).
We accepted | P(f)| = exp(—xft*). The phase of
P(f) was calculated as the Hilbert transform of
log | P(f)|. Using Aptekman and Bogdanov
(1981) for P-waves, ¢ = 0.66 s was accepted. To
calculate 7gj; we accepted Q, = 1.6 Q; and C, = 1.8
C,, which gave t3;=1.9 s. For pP and sP, ¢*
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TABLE 1

The station and phase parameters *

Station Ao Aoz J(°®)

code (®) - (°) P oP P
RIV 25 244 116 - 37
TAU 31 227 120 - -
RAB 325 305 122 - -
PMG 335 392 122 - -
GUA 51 316 132 = 26
MUN 54 248 134 51 26
DAV 60.5 295 138 - -
SPA 65 180 140 - -
BAG 70 300 143 - -
MAT 72 327 144 = -
SHK 73.5 322 145 - -
ANP 74 308 145 - -
HKC 78 302 147 - =
COR 87.5 37 151 - -
TUC 88.5 53 152 - -
CHG 89 291 152 = 16
DUG 91 46 152 = 16
COL 93.5 14 — - 15
ANT 97 120 - 28 -
NNA 98 107 - 28 -
LPA 100 136 - 28 -

* A is the epicentral distance, Az is the epicentre to the
station azimuth, j is the angle of incidence at the source
measured from zenith; j for P and S rays coincide.

values for two legs were summed. For the second
leg, t* was taken as 0.85 s (for surface focus). For
the first leg of pP, #* = 0.26 s was computed from
Q(H) of Aptekman and Bogdanov (1981) and for
sP that value was multiplied by 1.6-1.8. The
resulting values were 73, =1.11 s and 73 =1.6 s.

To minimize the deconvolution noise generated
by the decrease of the composed transfer function
at low (because of instrument) and high (because
of absorption) frequencies, band pass filtering was
applied, with the lower cutoff at 0.01-0.02 Hz,
and the upper cutoff depending on the phase type,
as follows; 0.7 Hz for P, 0.55 Hz for pP, 0.45 Hz
for sP and 0.40 Hz for SH. Then the inverse
Fourier transform was applied. Results are plotted
in Figs. 1, 2 and 3.

We calculated the unnormalized power mo-
ments for body wave pulses for degrees 0, 1 and 2;
normalization was carried out for degrees 1 and 2
(see (6)). Pulse beginnings and ends were chosen
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Fig. 1. P-wave pulses after deconvolution of instrument of Q-operators reduced to focal sphere. Geometrical spreading according to
(Seismol. Soc. Am., 1968). Circles denote beginning and end points of integration interval. On stereographic projection, incidence
points of rays are given and P nodal planes for accepted double couple. Lower hemisphere projection is used here and below (unless

otherwise specified).

by eye. In some cases, this choice was not un-
equivocal, in which case two variants of E,, e,
and e, were determined.

The E, values for the P and SH phases (see
Table 2), were used to determine the seismic mo-
ment tensor, and e; and e, were used to de-
termine source power moments. The values of e,
and particularly e, were much more susceptible to
noise and to the choice of integration interval than
E,. Thus, several calculated values of e; and e,,

which were considered inaccurate, were excluded
from further analysis.

To calculate the seismic moment tensor M, j#
Momg’-) from E, values, we reduced the data to
the focal sphere and then solved the least-squares
equations for tensor components. The coordinate
system (north, east, up) was accepted. These equa-
tions are of the kind:

ririj = Eép)(") : 47TPC%’RF
ris;M, ;= ESSM(r) - 4mpc3Ry

(for P)  (17)
(for SH) (18)
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where Rp is the radius of focal sphere, and s is
defined as s=rXe;/|rXe;|; e;=(0, 0, 1) is di-
rected towards the zenith.

Our main aim was to find out whether M,;
corresponds to a double couple source or not. So
we tried several variants in our computations. We
tried three variants of geometric spreading: com-
puted from tables (Seismol. Soc. Am., 1968) from
Aptekman and Bogdanov (1981), where model B1
(from Jordan and Anderson, 1974) was used; and
computed (in Ben-Menahem and Singh, 1972)
from Jeffreys-Bullen tables for H = 380 km. Dif-
ferent data sets included P-waves, P- and SH-waves
and SH- and SV-waves. In the case of SV-waves,
E, was computed from the E, for SH and the
observed polarization angle. We should note that
when only SH data are used, the least-squares
system becomes ill-defined, and even when SH
and SV data are used, the trace of M;; cannot be
determined. To find out if the results were biased
by PcP and ScS phases, subsets of data with

A <75° were used. In another test, we used in
dubious cases E, values with only “long” or only
“short” variants of integration interval. In.all, 32
variants of M;; were computed.

To analyze the results, let us introduce the
values a = (M, + M,, + Mj;) for the isotropic
part of M, ., and:

ij>

-1

for the “Lode-Nadai coefficient”. Asterisks again
denote ordered eigenvalues. When o« =0, the
source is of the pure shear type, and when ad-
ditionally 8 = 0, the source corresponds to a dou-
ble couple source, or to plane shear rupture. Hy-
potheses « =0 and B =0 were tested using the
accuracy measures of M,; components known from
the least-squares technique, and accuracy mea-
sures of MF determined from the first by the
Monte-Carlo type technique. Estimates of the
variance and covariance of M;* were also com-
puted by repeated least-squares M, determina-
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Fig. 4. Eigenvectors of M;; for all variants of computation.
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decreasing eigenvalues. Computed error regions for main
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tion in the coordinate system defined by eigenvec-
tors of M, ;. Both techniques gave the same results.
M, values were estimated as (M} — Ms%)/2.
When « =0 and B =0, this estimate is accurate,
and is acceptable when deviations from double
couple are small. Let us consider now the results
of these computations:

(1) Eigenvector directions (Fig. 4). Error regions
for these directions have dimensions from 10° to
30°, as a rule below 20°, and between variants
these directions change only slightly.

(2) M, value. The main causes of error in
estimating M, are, first, the variant of geometric
spreading (deviations up to 1.7 times) and, second,
the wave type (M, (P) is some 30% greater than
M,y(S)).. The second deviation could have been
produced by an inaccurate 3, value. We repeated
the deconvolution of SH phases with ¢* increased
to 2.2 s; the M, value stayed practically the same.
M, errors as a result of factors mentioned are
much greater than the formal least-squares errors.
We can imply that the real M, accuracy is de-



termined by the accuracy of velocity and Q-Earth
model, and cannot be revealed when only one
fixed Earth model is used in computations.
Another implication is that results from the
“mixed” data set (P + SH) can be unreliable.

(3) Value of the isotropic component (o). All «
estimates are less than 10% of M,; none of them
are significant statistically, so the source can be
regarded as a pure shear one.

TABLE 2
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(4) Coefficient B. When only P or only S data
are used, B estimates are 0.2-0.3, and o(B)=
0.25-0.40. With mixed data, the B estimate be-
comes 0.3-0.4, and o(f) decreases to 0.2, as the
amount of data is increased. We suppose this
phenomenon to be related to non-uniformity pro-
duced by the merging of P and S data. Detailed
analysis of station geometry, and the structure of
equations and residuals justifies this assumption.

Input data for calculations of seismic moment tensors and source power moments *

Station Phase E, (cms) ey (s) e, (s?)

Gy 1 2 1 2 1 2
RIV P 2213 - 3.98 ** e 4.06 ** -
TAU P 11.7 - 515 %* - 6.71 ** -
PMG P -19.3 - 2.83 = 2.51 -
RAB P -16.7 - 2.53 - 1.21 -
GUA P —25.1 = 2.23 - 1.19 -
DAV P —-21.2 — 2.36 - 1.11 -
CHG P —-20.8 - 2.98 - 1.89 -
BAG P —-19.6 =172 2.96 2.66 1.95 1.25
ANP P -19.1 -175 2.66 242 1.95 127
HKC P —18.1 —-15.6 331 2.95 2.68 1.60
MAT P -279 -20.5 3.63 3.10 3.31 2.25
SHK P —195 —-18.2 3.68 3.39 2.34 1.60
MUN P —4.18 —3.86 2.36 1.83 2.47 1.38
SPA P 7.81 - 3.62 — 1.57 -
TUC P —9.20 -7.31 4.76 3.32 2.61 1.11
DUG P —3.50 —-2.92 2.85 2.20 3.23 1.20
NNA pP - = 5.00 = 3.23 -
LPA pP - - 3.83 - 4.10 -
ANT pP - - 3.94 - 4.44 -
MUN pP - - 1.69 - 1.18 -
RIV SH —40.6 - 2.59 - 1.40 -
TAU SH =222 - 2.16 -~ 1.94 -
MUN SH —48.6 - 341 - 2.35 -
PMG SH —34.6 - 3.54 ** - 5.94 ** -
MAT SH 14.7 - 3.28 - 1.97 -
TUC SH 70.8 - 2.89 - 3.08 -
COR SH 75.0 - 3.94 - 2.86 -
MUN sP - - 1.72 4.43 0.90 3.64
RIV sP - - 4.32 — 1.35 -
CHG sP - - 421 - 1.41 -
GUA sP = - 3.94 4.08 1.74 2.61
COL sP - - 4.80 - 5.51 -
DUG sP - - 4.76 5.87 4.10 6.55

* Values E, correspond to the focal sphere of radius Rg =1 km; for pP and sP, they were not computed. In many cases, two
variants of integration interval, denoted 1 and 2, were used; variant 1 corresponds to the main variant of source power moment

computation.
** Excluded in the main variant.
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For unmixed data, the estimated 8 value does not
differ significantly from zero and the simple shear
(B8 =0) model can be considered acceptable. The
choice of integration interval has been shown to
be of minor importance. Residual error does not
decrease when data with A > 75° are excluded; so
core phases seem not to bias our results.

Taking all this into account, for the final calcu-
lations we used inversion with the complete P-wave
data set and with Herrin’s spreading. The choice
of wave type and of the variant of spreading was
somewhat arbitrary; however, this is not im-
portant for our purposes because the properties
a=0, 8=0 (double couple) and the eigenvector
directions were practically independent of the data
set. Eigenvalues and eigenvectors for the accepted
inversion are given in Table 3 (a = —0.03 4+ 0.12,
B =10.31 + 0.43). For the accepted double couple,
the axes were taken to coincide with the first and
third eigenvectors. The value of M, is 1.14-10%
dyn cm. Fault planes can be seen in Fig. 1. This
solution was additionally tested using pP data and
S polarization angles. It should be noted that in
several cases, the signs of P and pP areas (used
here) were opposite to the signs at the onset of the
same phases. This fact partly explains why our
solution differs from previous ones (Balakina et
al., 1980; Starovoyt et al., 1983).

Determination of source power moments of de-
grees 1 and 2 for a deep earthquake

The pulse power moment values e; and e, of
phases P, SH, pP and sP were used to calculate
source power moments: the 3-D ones N, and N,g4
(a, =0, 1,2, 3), and the 2-D ones N, and N,
(a, B=0,1, 2). Beforehand, corrections were ad-
ded to e; and e, values to compensate for the
deviations produced by low-pass (high-cut) filter-
ing. The resulting values are given in Table 2.
Then the least-squares technique was applied to
eqns. (11) and (12) using 33 phases, with some
definite (No. 1 in Table 2) variant of integration
interval for each variant. For three phases, the
residuals were greater than twice the standard
deviation, and so these phases were excluded. The
variant of inversion with the remaining 30 phases
was considered as the main one. To test the stabil-

Fig. 5. Directions of ¢ for different variants of 3-D computa-
tion. / = for all variants except the main one (No. 1); 2 = for
the main variant; 3 = eigenvectors of seismic moment tensor.
Dashed lines show the error region of direction of ¢ for the
main variant.

ity of the result, an additional 11 variants of
inversion were carried out. In these variants, we
(more or less at random) either excluded several
phases or used values of pulse power moments
obtained with another variant of integration inter-
val.

These calculations showed that the least-squares
accuracy estimates for the main variant as a whole
describe well the real accuracy of the results. To
illustrate the dispersion of these variants, direc-
tions of ¢ for the variants are shown in Fig. 5.
Dispersion of IV is nearly the same as of ¢, and
the dispersion of d directions is lower. The results
of computation for the main variant are given in
Table 4. In Fig. 6, directions are shown for vectors
d,, q, and IV (from 3-D moments), and for the
normals n; and n; of nodal planes. From these
results it can be seen that for the N value and
ID direction the estimates are stable, while for
both the other eigenvalues the estimates differ
insignificantly from zero. Moreover, the directions
of vectors d, ¢ and [ are near. In these cir-
cumstances, the focal plane cannot be determined
from the power moment data only, and the infor-
mation on M,; must be added. From Fig. 6 we see



TABLE 3

Seismic moment tensor estimates (main variant) *

TABLE 4

Source power moment estimates and derived values

My o(MF)  Az(%) (%) 8(%)
1 099 031 34 79 15
2 020 034 115 129 15
3. -129 009 137 41 10

*

M¥, o(M;¥) are eigenvalues and their standard deviations
in units 102%° dyn cm; Az, j are azimuth and “angle of
incidence” for the corresponding eigenvector; 8 is half of
the angle of “standard error cone” of the eigenvector.

that all the named vectors are near to one and
only to one of two nodal planes (I), so the source
plane can be determined: » has j=113° and
Az=4° (and b has j=48° and Az ="71°).
Now we can change the coordinate system (new
x5 along n) and apply conditions (5). The results
of computations in this case (B) are given in Table
4 and Figs. 6 and 7. They differ only slightly from
the 3-D results, and again, the eigenvalue N,%
cannot be determined. The estimate of it is nega-
tive, but this result is insignificant. Other results

Fig. 6. Comparison of direction estimates in 3-D and 2-D
calculations. a. P nodal planes; variants of source plane with
normals n; and nj;. b, ¢ and d. Vectors d, ¢ and [V, Dotted
ovals are error regions for 3-D estimates, solid bars are the
same for 2-D estimates.

Parameter Model 2
A B
N, (s) 3.61+0.17 3.62+0.16
d
d (km) 8.8+2.7 8.9+2.3
Az (°) -98 —-95
i (%) 110 109
N, (s®) 2.80+0.33 2.70+0.23
q
g (km s) 7.9+2.2 8.3+1.7
Az (°) —-115 -90
Jj(®) 105 100
N (km?) 60 +26 57 +£19
1D
Az (°) 54 67
Jj(®) 54 44
N (km?) —-22+33 —47433
1@
Az (°) -162 111
Jj(®) 42 124
N (km?) —127 +9%4 -
13
Az (°) 130 -
7 (%) 109 -

? For B model, Az and ; are given in initial coordinate
system.

are physically reasonable, and provide informa-
tion on the space—time source structure.

Interpretation of results

Space characteristics. The “static source” is
elongated in IV direction, R, =7.5+ 1.3 km, Ly
=26 +4.5 km. As R, is not determined, we can
suppose that thie source area is elongated (W <
(0.5-0.3) L ). The static source centroid is shifted
by d=|d| =9+2.3 km from the hypocentre in
the direction of the long axis of the source.

Rupture direction is defined by the direction of
vector g. It is near to IV again, so the source grew
along its long axis.

Degree of symmetry. The static asymmetry
parameter is x = 0.68 4+ 0.28, and the dynamic one
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is A = 0.6 + 0.3. So the rupture is rather asymmet-
ric but not perfectly unilateral.

Rupture velocity. We note again that rupture
velocity estimates are necessarily model-depen-
dent. We have v; =2.6 £ 0.5 km/s, v,=4.0 £ 0.7
km/s, and v;=59+2.4 km/s. These estimates
do not strongly disagree, their weighted average
giving v =34+ 0.4 km/s = (0.6 £ 0.1)c,.

Source process duration. R,=1.7+0.1s, Ty=
6.8+03 s, 2N,=7.24 0.4 s. Results agree and
are relatively the most accurate.

Slip and stress drop. As we do not know Wy,
these estimates are very rough. Assuming Wy =
0.5Ly, and accepting p=1.32-10'2 dyn cm?, we

obtain B=M,/pLyWy=24 cm and Aoc=24
M,y/(LuWy)*/? =40 bar.

Discussion

The power moment technique provides a rather
useful and model-free description of the earth-
quake source process. For the earthquake studied
here, the estimated set of power moments of de-
grees 1 and 2 is physically reasonable, and the
Haskell-Aki partly bilateral model appears to be
suitable. In fact, d, g and IV vectors (in the 3-D
case) lie near to the fault plane, N,, N,, and N*
are significantly positive, d < Ly/2 and v < cg.

The important advantage of the technique de-
scribed is that it allows a systematic analysis of
the accuracy of the results, using the usual least-
squares estimates and the Monte-Carlo type
estimates for eigenvalues, eigenvectors and other
nonlinear functions of N, and N,z. An indepen-
dent way to test the accuracy was to exclude
subsets of observations and change the pulse in-
tegration interval.

Several assumptions were made to simplify the
inversion, and we shall discuss the most crucial
ones. We consider the un-accounted for effects of
near-source structure (“cold slab) and of near-re-
ceiver and near-reflecting-point layered structures
as a real but not very serious source of error. The
assumption of positive slip rate is perhaps partly
violated (some reverse slip seems to occur in the
final part of the source process—see Figs. 1, 2 and
3) but this was ignored. The postulate of a planar
source may also not be accurate: P pulses for RIV,
SPA, MUN and TAU suggest a slightly curved or
broken source surface. We think that the results of
our inversion are nevertheless reasonable.

These results and the usual success of inver-
sions in terms of parametric planar models give us
a hope that the idealization of (1) monotonous (2)
planar (3) shear rupture is often acceptable. We
underline that the need for the three numbered
postulates arises from the inherent general incor-
rectness of inversion of far-field data. Therefore
this, or some other restrictive set of postulates is
unavoidable if a practical technique is to be found.
Near-field data cannot help in general cases, but



with reasonable postulates their use can greatly
improve resolution.

An important disadvantage of the technique
described is that it is not generally applicable to
surface-focus earthquakes. However, for a special,
and not that uncommon, case Silver and Matsuda
(1985) have found a way to obtain useful results.
Another possible technique (proposed in Pavlov
and Gusev, 1980) is the inversion of squared
short-period seismograms for power moments of
the “non-coherent brightness” function.

Conclusion

An approach is presented for the description
and reconstruction of the space—time structure of
an earthquake source using power moments in
general and those of degrees 1 and 2 in particular.
Application of the technique to a real earthquake
is described in detail. The approach appears to be
efficient for a deep m, = 5.7 earthquake. The the-
oretical possibility of the reconstruction of a
smoothed source function for a planar source is
demonstrated.
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