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The breaking of a single asperity is treated as a typical
subsource generating an elementary short-period radiation
pulse at the source of a large earthquake. The model
offered in 13 and 14 is used to derive formulas which
describe short-period radiation parameters. The stress drop
at an asperity was determined in several ways; all estimates
were consistent and averaged a few hundred bars. The
asperity size was about 1 km. A relationship was derived
between this model and the source dynamics using the
concept of barriers as chains of rupture-resistant
asperities. The probability distribution of stress drop over
an asperity was examined. The accelerogram is suggested to
be considered as a sum of slightly overlapping pulses due to
individual asperities.

INTRODUCTION

The study of short-period wave generation at the earthquake
source is essential for a better understanding of earthquake focal
mechanisms and for developing a theory for ground motion prediction.
Short-period radiation (SP radiation) is not yet understood, even
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though it has been studied for many years [2, 5, 23]. The barrier
model [12], its "specific" version [31, 32], the dynamic model [9], and
other developments — all assume SP radiation to be excited by
numerous small cracks or subsources separated by regions of no
rupture (indestructible barriers), rather than by a single motion on the
fault. This assumption is not quite satisfactory from the standpoint of
tectonophysics, because in terms of geologic time movement on a fault
is a monotonic and unidirectional process, so it is not clear exactly
when the above barriers experience failure. As mentioned in [2], this
model is also not quite adequate in terms of seismic radiation
properties. For instance, the idealized spectral shape [32] is not quite

consistent with the observed spectra, and the f,(f ) parameter [2,

max
20] which has to be introduced is not intrinsic to the model. For this
reason the model of SP radiation as a set of numerous subsources [2]
was descriptive in character and the mechanical nature of a subsource
was not considered. However, the spectral shape assumed in the
model for a subsource was consistent with the model of a crack. An
alternative to the "specific” barrier model was the description of a
stochastic source in terms of a stochastic strength field and/or a
stochastic stress field [7, 8, 28, 307*.

This paper examines the corollaries of the assumption made in
[3] that the typical subsource is a rupturing asperity. The rupturing of
a single asperity was discussed in [13] and extended in [14] to the
case of an asperity at the center of a circular fault. Note that the
model suggested here has no direct relevance to the asperity model
offered in [26] where by asperity is meant a much larger body, not
related to SP radiation. For clarity we will term it the model of a fault

plane with many asperities and abbreviate it as the MA model.

*No comparison is offered here between theoretical models and the
fault systems observed in the meizoseismal areas of great
earthquakes such as the Gobi-Altai earthquake. — Ed.
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The development presented here largely follows the lines of [21]
and [27] where there was a clear recognition of a direct relation
between individual asperities (or stress concentrations) and the
parameters of SP radiation. Similar ideas on the source structure
have been recently put forward in [10].

In this paper we will use the MA model to determine source
dimensions and stress drop and examine the distribution of asperities
by breaking strength. The scaling law of far-field spectra and a
near-source theory for the MA model will be discussed in later

publications.

A SINGLE RUPTURING ASPERITY AND ITS RADIATION PARAMETERS

In this section we will discuss the concept of an asperity and

summarize basic formulas for the radiation excited during its rupture,
following to a considerable extent Das and Kostrov [13, 14]. But let us
first touch upon the problem of why asperities need be considered in a
seismic source theory.

The elastic linear compressive strain due to hydrostatic pressure
("compression”) does not exceed 1 percent at the depths of shallow-
focus earthquakes. We know that a flattened spheroidal cavity existing
in an elastic medium under no stress and having the semiaxes ratio «
€ 1 will close under hydrostatic pressure when the compressive strain
attains a value of the order of a. A geologic fault can be assumed to
be a contact of two rough planes at some typical angle of discordance
B. Extrapolating the above statement for a spheroidal cavity, one can
safely assume that the walls of a fault with B > 0.01 will not close at
50-100 km depths. The value B = 0.01 gives an angle of 0.6°, whereas
the typical angle between the actual fault plane and the average plane
(i.e., the typical plane discrepancy) is 1-3° and more. This means that
the walls will be in direct contact over a small fraction of a fault plane
not only at depths of a few kilometers [13], but in all shallow-focus

earthquakes. It can be hypothesized that the contact will be good
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enough in more or less isometric patches (asperities) outside of which
the contact is zero (when filled with a fluid) or low-strength (with a
plastic filling).

As has been mentioned in [13], breaking of asperities by shear
must necessarily take place as the sides of a fault move relative to
one another and may be directly related to the earthquake source
process. Where asperities are spaced far enough from one another,
any of them can break nearly independently of the others. For this
reason we will first, following [13], discuss some properties of the
breaking of a single asperity which are important in terms of elastic

wave radiation.
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Fig. 1. Diagrammatic representation of (a) an asperity,
(b) waves radiated by it, and (c) amplitude spectra of
these waves for: A — an asperity consisting of two
welded half-spaces, B — an asperity at the center of a
circular fault (main case), and C — an asperity near
the edge of a circular fault. Time functions and spectra
are shown by dashes (A), solid line (B), and dotted line
().
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P and SH waves radiated by a single asperity (Figure 1) behave in
the far-filed zones as a unidirectional velocity pulse (displacement
step) whose duration (rise time of the step) T_ is approximately equal
to breaking time [13]. The area of the velocity pulse is proportional to

the total "seismic force of an asperity”

F0=SAc(x,y)dS=A'cSa, (1)

z

where Ac = ¢ - O¢. is stress drop (strength o__, less the residual

coh
friction o ),  is the asperity region, S_ its area, and At is the mean
stress drop on the asperity. The important fact is that F, is
independent of final slip B in the place of the asperity. Disregarding
rupture details and the Doppler effect, one can define the variable
seismic force of a point asperity F,(t) in such a way as to have F,(0)
= 0, Fy(t,) = Fylw) = Fy. The displacement u (velocity u, acceleration
u) in P and SH waves is given by (for U and U F,(-) need be replaced
by Fo() or F(-))

P,SH
P SH (rf) = D F, ([—r/cp's)

ipch o7 ’ (2)
where r is the vector from source to observation site, r = |r|, p is the
density, Cp. s is P,S wave velocity, DP:SH is the radiation pattern. We
have DP»SH = pP.SHRP.SH "where RP»SH is the standard radiation
pattern for a dislocation source for the same area £ with the normal n
and slip direction b "along” At (i.e. b, ~ tUnJ); DP»SH is a "correction
factor" whose value is around two. For SV waves, u(r, t) will for some
angles be a linear combination of lfo(t) and the Hilbert transform of
lfo(t); this will not however affect the amplitude spectral shape which
will in all cases be identical for SV and SH waves.

The breaking time T, was found in [13] by a numerical
experiment using a discrete model for a circular asperity of diameter

2R_ taken to be equal to ten grid spacings. The result was
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Ta = 2Ra/\)acs, (3)

with v = 0.65-0.75. It is not clear whether this estimate would be
valid, if the asperity was broken by the source rupture rather than in
a spontaneous manner. A numerical experiment [15] has shown that in
an inhomogeneous fault model involving a set of three prestressed
asperities, the spontaneous rupture of the first asperity occurred at a
velocity much smaller than cg, that of the second was more rapid, and
the third ruptured at a velocity significantly above cg. We will use the
value v_ = 1.35 in our calculations (the adopted rupture velocity is
0.78 cp = 1.35 cg).

The most serious idealization in [13] is the assumption of an
infinite fault (crack). The Rayleigh waves excited by the rupture of an
asperity then propagate away to infinity, and it is only the displace-
ment step mentioned above that is radiated inward in the shape of
body waves. The more realistic case, a circular fault with a circular
asperity at the center, was considered in [14]. Surface waves will in
that case be diffracted at the fault edges with the result that the
wave shape will be altered (case B in Figure 1): the displacement step
ends in a smooth return to zero during a time of the order of 2R_/cg,
where R_ is the fault (crack) radius and cg is Rayleigh wave velocity.
Also important is the case of an asperity located near the edge of the
fault. The expected diffraction-affected pulse shape for that case is
also shown in Figure 1.

It should be noted that the amplitude of an acceleration pulse due
to a single asperity is not affected by the asperity size, the stress
drop At alone being of importance. We shall take up the simplest case
of a circular asperity for which F, = nRiAt and assume f(t) =
1-cos(2nt/T) as the shape of velocity pulse. We then easily find that,
= max|Fy(t)| = 2nF,/T2. Putting T = T in this

expression and substituting I':.0 max

for this pulse, f50 ——

into (2) for u=a, we find the peak

acceleration in SH motion as
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DSH 2
agf;x=(” %) (4)
pr

8

We now modify this estimate to be able to use it for the interpretation of

observed near-source acceleration. To do this, we first replace DSH with
—_(L/ 1 SH 1 SV 12 g
D_<2 (m SS;(D )de+2;§‘13 IdQ)) , (5)
Q /

where Q is the unit sphere. According to our rough estimate, D ~ 1.16,
Dy = 2.6. It should also be remembered that amplitude will be twice as
large at the free surface. The modified (4) will thus hold for a uniform
half-space. The difference in the impedances (cqp) at the source and
beneath the station for typical frequencies of 3-10 Hz will enhance the
amplitude by another factor of two [2]. The final formula for v_ = 1.35
is

a,ax = 3-3A1/pr. (6)

m

A similar expression (with the constant equal to 1) was derived in [21]
through physical reasoning.

We now turn to the spectra of the radiated waves (see Figure 1).
The characteristic frequencies f_ and f_ are controlled by the rise

time T_ and the pulse duration T_:
fac = Co/Tacr (7)

where Cg = 0.8 will be used in subsequent calculations; this value was
obtained for a symmetrical trapezoidal pulse whose rise time is 20
percent of total duration. Case A at frequencies f € f_ yields the

following amplitude spectra of velocity and acceleration:

U(f) == u(l) |t = DF y/4mpcsr,

. (8)
a(f)=2nfu(f).
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These formulas can also be used for case B, approximately within the
frequency range of 3f_ <K< f,/3. The level of velocity spectrum (or
acceleration spectrum at a fixed frequency) is thus controlled by the
“seismic force” F,. For the vicinity of f_, we write the acceleration

spectrum (by analogy with the Brune model) in the form

DF, f
a(f)= , (9)
i ( 2pc5r ) A

with v, = 2 as given by the observations [17]. The peak acceleration

spectrum is then

DFof,

a(f)max:—_ (10)

4pcgr

Hence a(f) . is proportional to Fyf_ (or AtR,). Figures 1 and 3 (see

x
below) show a smooth peak given by (9) represented schematically as
an angle.

The concentration of stresses over an asperity is important in
terms of the mechanics of faulting. Das and Kostrov [13] assume the
asperity to be in welded contact, which involves an integrable stress
singularity at its edge. It can be supposed that actual asperities
"plastically adapt themselves"” to loading and that the distribution of
stress over an asperity is not dramatically nonuniform. An analysis of
the asperity modeled by an elastic paraboloidal hill in contact with an
elastic plane lends support to this supposition. This problem is
identical with the well-known Hertz problem of elastic balls in contact
[1]. In the case of contact without friction, it predicts an ellipsoidal
distribution of normal stress (similar to that of displacement contrast
for an elliptical fault loaded at infinity). It may well be assumed that
the incorporation of dry friction and shear stress would produce a
similar distribution of shear stress (the stress increasing inward

rather than outward). A detailed analysis of this case is hampered by
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the necessity of incorporating the load history. We also note that an
asperity in welded contact, as in [13], corresponds in this context to a

“flat-topped hill" with vertical sides.
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Fig. 2. Signals supposed to have been radiated by
asperities. Top — an asperity in the lower portion of
the San-Fernando earthquake source. The integrated
accelerograms were recorded at Pacoima (two
components) and at Lake Hughes-4 (one component)
(after [24]). Bottom — same for the 1968 Tokachi
earthquake and seismic station Muroran (after [29],
pulse 2). In all cases one can see a unidirectional
velocity pulse and a displacement step. The latter may
have been distorted by double integration.

The above reasoning suggests that, even though the theory of

[13] involves a singularity, the assumption of mean stress drop At
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over an asperity is admissible and, moreover, Ao(x, y) can be assumed,
for estimation, to be constant over the asperity area.

Figure 2 presents two examples of recorded radiation due to the
rupture of a single asperity. The records have a characteristic feature
— a unidirectional pulse of velocity. Both examples were obtained from
an analysis of the accelerograms recorded during large earthquakes,
which may contain many pulses of this type. A single pulse can be
visible either when it is one of few, or when it has an abnormally large
amplitude. The examples illustrate both of these possibilities. The first
example (Figure 2, top) has been mentioned in [21] (we borrowed it
from [24]). A remarkably clear-cut velocity pulse suggests that the
idea of a crack between the sides of a fault may be more than a mere
idealization. The other example (Figure 2, bottom) is borrowed from
[29]. Although the authors interpreted the observed pulse as being
due to a subevent (crack), our interpretation does not seem to be less
substantiated. We used the parameters of the pulses to evaluate F,
R, and At for both cases (Table I).

SEISMIC RADIATION FROM A FAULT WITH MANY ASPERITIES

We saw in the preceding section that the main pulse of velocity

and acceleration due to a single rupturing asperity is controlled by its
"local" properties — stress drop and size. We will assume therefore
that the case of several asperities experiencing rupture can be treated
by calculating the radiation of each using the formulas for a single
asperity and summing the contributions.

Consider a fault model as a crack whose sides contact in many
small patches or asperities. Proceeding in the spirit of Kostrov's book
[4], we assume an earthquake source located on such a fault to be a
shear crack, when viewed "macroscopically”, for instance, a circular
crack of radius R_ with a constant stress drop A1, its formation being
associated with a "macroscopically” smooth propagation of the rupture

front. Viewing the picture "microscopically”, we see a "wave" of



70 A.A. GUSEV

individual asperity ruptures instead of a smooth motion of the front.
We will name the source model with many asperities the MA model.
The value of Ac in this model can be unambiguously defined only for
that portion of the fault plane where many asperities are present. The
assumption of Ac constant over the fault plane means that the
mathematical expectation of the quantity thus defined is the same for
any area. The relation between the macroscopic Ac and the mean
stress on the asperity At for a given source is found from a balance
of forces in macro- and microrepresentation, yielding for identical

asperities

SA0'=ZF0,[==N3ATS¢, (1)

where S is the crack area, Ng the number of asperities on it, At and
S, being treated as means over a set of asperities.

We now introduce an important parameter, a "space factor” ksp
which is equal to the portion of the fault plane occupied by asperities.

Then the number of asperities on the fault plane can be expressed as

- - 2 2
Ng = kspS/Sa = kspRc/Ra, (12)
the last expression being true for a circular crack of radius R_ and
identical circular asperities, the case with which we shall be

concerned. Expression (11) now yields a relation between Ac and At
At = Ao/ksp. (13)

This relation which was derived from physical reasoning is in
satisfactory agreement with the results obtained in [10] where the
mean seismic moment due to some individual asperity (a single or one
of many) located at random within a circular fault of radius R_ is

evaluated from (in our notation)
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Mgy = (16/7)RZR_At = (16/71)F R . (14)

Considering that My, = My/Ng and M, = (16/7)Ron, [14] readily gives
(13). Finally, we need to introduce the mean distance between the

asperities
d = (S/Ng)V2 = (m/k ) %R,, (15)

Now assume that the asperities rupture at random times. Then
for a source with Ng identical asperities, the amplitude acceleration

spectrum is
a(f) = a,(INY2, (16)

where a,(f) is that due to a single asperity.

Note that, after the rupture front has traveled along the fault,
ground motion can in principle occur with sticking with one and the
same asperity multiply radiating SP pulses. If this is the case, (16) is
not valid and the number of pulses is proportional to ST_ rather than
to S, where T_ is the duration of the source process. The usual
similarity assumptions would give a(f)'vMZ)’2 in our version, whereas we
have a(f)'sz,/z in the case under consideration, M, being the seismic
moment. Earlier [2] we assumed the latter version, while the
hypothesis of a constant "effective” Ac [22] implies the former. Note
that the observed short-period spectral trends reported in [2]
indicated a(f)~M8'35, whereas more recent data suggest a(f)NMg"”.
Observations of this kind do not therefore provide decisive
constraints. Recalling the results from [33], where a "seismic
antenna" was successfully used to monitor the motion of a "bright”
high-frequency radiator at the rupture front, we are inclined to
acknowledge the first version (an asperity radiates only once,
a(f)~M6’3), explaining away the departure of the observed trends from

1/3 as the effect of secondary factors.
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Fig. 3. Modified source spectra K(f)Eszo(f) for the MA
model on the assumption that the main smooth source
(crack) obeys similarity requirements. The plots are
given for three variants of My and f_ (f_~M,7"/3, At =
constant) and two variants of f_. The stress drop
produced by asperity rupture is assumed to be identical
in all cases. The lowermost line shows the spectrum
for a weak earthquake.

Let us consider the general structure of a source spectrum in
the MA model. We will assume that a "macroscopic” crack radiates a
smooth displacement pulse having an o~ Y spectrum with y = 2.5-3.5
and a corner frequency w_ = 2nf_. Superposed on this pulse is the
radiation due to asperities whose f_ is the same as that of the
"macroscopic” pulse. It should be emphasized that in the MA model
the number of asperities, and hence the total energy of SP radiation,
increases with the size of the source in direct proportion to the
source area rather than to ST_ as was assumed in [2]. That means
that, when considered at macrolevel, SP radiation energy can be
regarded as "quasithermal” losses [4] or as rupture energy.

In [2] we proposed that the source spectrum IMO(f)I, which is
the modulus of the spectrum of Mo(t) describing the rate of change of

the seismic moment of an equivalent point source should be replaced
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by the function
K(f) = £2|My ()] (17)
which describes the acceleration spectrum. For a uniform medium

(2m)% RK (f)

a(f)=
4npckr

(18)
Figure 3 presents several schematic spectra K(f) for our model,
including the hypothetical spectrum of a weak earthquake which is
represented by the rupture of a single asperity as conceived in the
model. The MA model obviously yields spectra with the similarity
principle violated, the character of the violation being consistent with
the modified model B [6] and the system of spectra in [2].

One can use (8), (9), (16) and (18) to determine the level of K(f)
in the MA model containing identical asperities. We have for the

low-frequency fall-off between f_ and f_

K(f) = 0.5Dycgk 2R R, Aptf (19)
and for the vicinity of the K(f) peak (i.e. near f_), putting v, = 2 and
finding from (4) and (7)

R, = v,cgCg/2fa, (20)

a

we arrive at

B"a 'c

K(F) ax = K(f,) = 0.125D,cZk2Cgv R AT. (21)

The quantity Dy is here to be understood as an rms value over a
sphere and so is K(f).
The formulas derived in this section can be used along with

observational data to determine various parameters of the model. We
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will use spectral information from [32] and [34]; specific levels of
K(f) and f_ will be for the value log M, (dyne-cm) = 26 (M| = 6.6). In
that case, using Ac = 30 bars as a typical value, we get Rg = (16/7)
Mo/Ac'’3 = 11.4 km. We also take the following values for all
subsequent estimates: D = 1.16, Dy = 2.6, C3 = 0.8, v, = 1.35, ¢ =
3.5 km/s, and p = 2.7 g/cm®. The mean spectra from [34] can be
used to find the peak frequency of the observed spectrum K(f) for M
we get f_ = 2.4 Hz, and (20) yields R, = 0.8

km. Using ksp = 0.1 as a trial value for this parameter, we obtain

= 6.6; treating it as f_,
from (13) the estimate At, = 300 bars. The values of K(f) will be used
for f = 0.63 Hz € f_ and for f = f_ = 2.4 Hz. the data from [32] and
[34] when transformed to the case of a uniform crust [2] yield log
K(0.63) = 24.30, log K(2.4) = 24.52. Solving (19) and (21) for A1, we
get the estimates A1, = 250 bars and Aty = 210 bars.

STATISTICS OF At AND PROPERTIES OF ACCELEROGRAMS

In this section we will derive an estimate for At on the basis of

observed near-field peak accelerations. To do this, we will first
assume the peak acceleration in an accelerogram to be formed by the
pulse due to an asperity rather than a fluctuation of a sum of
random terms. This assumption will be substantiated below.

A set of asperities can be thought of as a statistical ensemble

having the distribution function
P(At < At, R] < R,) = F(A1, R).

Below we shall only consider the distribution over At. We recall that
At controls the peak acceleration in the pulse radiated by an asperity.
The "heavy-tailed" character of breaking-strength distribution for
realistic models of actual earthquake sources [28] and the shapes of
near-field accelerograms, prescribe the employment of a power-law

rather than lognormal distribution:



FAULT PLANE MODEL 75

P(AT' > A1) = (At/AtT )%, (22)

We now find for this distribution the median of the largest value in a

sample of N asperities. A simple calculation yields
ATN;o,s/ATmin=(]_2‘l/N "l/az(l 45N)l/¢ (23)

The mean and variance for (22) are

7

(A =( & )Armm, (24)

(AT — (AT = (af( —1)? (@ — 2)) Ao, (25)

We will use these results to interpret near-field peak
acceleration data: we assume that the observation site is at the
earth’'s surface at the distance r, from the plane of a roughly vertical
fault where the earthquake occurs. Peak acceleration can be
determined by taking into account the contribution of the nearest
portion of the fault plane, because radiation due to more distant points
of the fault will not produce a peak value. That means that the
dependence on source dimensions (or magnitude) will only take place
for those comparatively small shocks whose sources cannot entirely
cover the nearest fault portion mentioned and that the overpassing of
a critical value will make the dependence vanish (cf. [11]). Assuming
a direct relation of a source area to magnitude, one can determine the
critical magnitude from the area of that portion. To make numerical
evaluation possible, we take this area to be the lower half of a vertical
square with the side 2r, whose center is at the earth’'s surface at the
point of the fault which is nearest to the observation site. The area in
question is 2r(2) and the mean distance between a random point in the

area and the receiver is approximately r = 1.2r,.
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Fig. 4. Experimental relationships of peak horizontal
acceleration a_ _  versus magnitude and theoretical
broken lines for distance ry = 10 km to the fault for a
power-law distribution with a = 1, 2 (preferred value),
and 3: 1 — after [16]; 2 — after [11] (both plots are
for 10 km distance to the nearest point of the vertical
projection of the fault on to the earth's surface); 3 —
after [19] for epicentral zone; 4 — region of data
points after [17] for a hypocentral distance of 10 km

Let us take the specific value ry = 10 km; then the area of the
nearest portion is S = 200 km? for which the critical magnitude is M
6.3. For smaller magnitudes, the median peak acceleration A naxe
proportional to At _ .  (6), decreases with decreasing magnitude owing
to a smaller number of asperities N in (23). As N~S, we have

log a

1
A —— .
e log S + constant;

since log S&M + constant, this gives a relation between a_ . and M.

Figure 4 presents observed a_ , (M) relations based on different sets

of data and a fitting broken line whose rising portion is plotted in

accordance with the value a = 2. It is apparent that a = 2 is a rough
estimate, but the values o« = 1 or aa = 3 are obviously much less likely.
The broken line takes into account the fact that the observed
relationships in [11, 16] correspond approximately to the distance to

the nearest point of the fault (in particular, to its edge), while our
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estimates are approximately relevant to distances to the center of the
fault. Since the observations and the theoretical broken line are
roughly consistent, this indicates an approximate validity of the
underlying theory. The level of the broken line for large M (a_,_, = 500
cm/s?) can be used to evaluate At from (6) on the assumption that
the peak acceleration has been caused by an asperity. Reversing (6)
for a random location of the strongest of N asperities, we find the

stress drop for it as

ATmax = 0,30 07 imgs. (26)

Assuming that (26) gives Aty , 5, we derive the mean At from (23)
and (24):

o
Aty = —— (xR2/1.45 k,, (2rd)V*ac . (27)
Putting r = 12 km, « = 2, and a_ ,, = 500 cm/s?, we use (26) and
(27) to obtain another empirical estimate At, = <A1:> = 260 bars.

Assuming <A1:>, R,. and ksp to be constant in (26) and (27), we
get the relation

amax'—_—f(a)roa . (28)

To sum up, peak acceleration for a = 2 around the middle of the
fault (at distances smaller than the fault width) is independent of the
distance to the source. This theoretical result is in approximate
agreement with macroseismic observations, which is another evidence
in favor of the assumption o = 2.

We shall now be concerned with the question of how peaks form
in an accelerogram according to our model. This is of interest, in
particular, in relation to the question of whether an accelerogram can

be treated as a quasistationary Gaussian process (as is often done).
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We will begin by deriving some general results and then examine what
can be expected for the distribution given by (22) with a~2.

Consider a rectangular source of the dimensions LXW with
rupture propagating along the source length (L) at the velocity v =
V_Cg, SO that the rupture time is T_ = L/v. The number of asperities

ruptured during the time T_ will then be
m = (N/T)T, = 2k v W/nv R, = 4k_ v Wf_ /m viCgcg.  (29)

The pulses obviously do not superpose when m % 1, at least near the
source, and the accelerogram will have an unusual appearance. At
greater distances it will approach a quasistationary Gaussian process
owing to scattering and multipath propagation. The value m = 1 gives
the following critical source width:

W =1t\)§CBcS/4k v _f (30)

cr sp c a’

When vg. = 0.6, we have W__ = 30 km. That means that a multiple
superposition of pulses can only occur during very large earthquakes.
Even then, however, the near-source accelerogram will not
resemble a Gaussian process when a & 2. As can be seen from (25),
distribution (22) has infinite variance when a &~ 2. That means that,
even with multiple superposition of pulses, the main contribution to the

amplitude is made by some specific asperity. This justifies our
assumption that the peak acceleration is due to a single asperity. If
one is allowed some exaggeration, one can speak of each positive
spike in an accelerogram as being due to a specific asperity.
Obviously, the results of this section can be used for modeling

accelerograms.

STATISTICS OF At AND BARRIERS ON THE FAULT

The problem of the statistics of At can also be approached

theoretically by following the assumption of Fukao and Furumoto [18]
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that an earthquake source develops in an approximately self-similar
manner: a source passes through a sequence of stages so that its

current dimensions ought to form a geometrical progression: Ly, bL
b2L

0
o» --- Each stage consists in overcoming a "barrier” located around
the perimeter; the barrier is passed over in a near-critical regime
with a high probability of stoppage. Barriers of different strengths
form a hierarchical system of closer and closer spaced grids on the
fault (the larger the spacing, the stronger the barrier). At each stage
the source occupies one square (or several squares) in the grid of the
relevant rank.

We will assume that barriers in this model are chains of strong
asperities spaced at a uniform interval d. We will take a fixed region
of the fault having an area S*. The total length of the grid units with
the square side q will be found as (number of
squares)X(semiperimeter of square) ~ (S*/q2)X2q = 25*/q. In that

case the number of asperities in this grid is
N*(q) = 25*/dq. (31)

It has been assumed that the larger the grid spacing, the stronger the
asperities. Supposing for the sake of definiteness that we have At =

Aty ~ qP for the asperities, we substitute q ~ ATL/B into (31) and get
N*(At, )~S*/A1)/B (32)

In order to relate q and At,, we will use the basic relationship of

the theory of a crack with an end zone:

Ao, ~ (R./a)!2Ac, (33)

[}

where Aocoh is cohesion less friction in the circular end zone of the

width a, and Ao is the stress drop on the fault plane of radius R_ . A
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"microscopic"” version of this criterion can be derived by taking into
account that the spacing between the barriers is d and correlating the
distance between the “rows of asperities”, also d, with a. The

d? = S_At, =

dszpATb, the breaking criterion for a barrier unit being obtained as

requirement of the equality of forces gives Ao_,

Aty = (Rg/d)"2k | Ao, (34)

Assume that a barrier breaks when the mean At for the chain is
equal to the critical value. In that case, treating (34) as relating the
barrier grid size q®2Rg to the At  for the asperities that make up the
barriers, we find that 8 = 0.5 in (32). The probability of different At

is then
%, 2
P(At,) ~ 1/(At, )%,
The values q, as well as A1, form a geometrical progression. Then

P(AT3 A%, )~1/(A1,)2+1/b(AT, )2+1/b2 (AT, )2+...
. =1/(AT)2(1/1-b7 ) ~1/ (A1), (35)

where the accidental parameter b is the ratio of the q progression.

We do not wish to assert that all strong asperities with some At
form barrier chains. It would be sufficient to assume that the portion of
asperities with some fixed At that form barriers is independent of Ar.
We can then compare (35) directly with (22) and provide additional
confirmation of our power-law distribution of At with o = 2.

We have implied that the mean stress drop Ac is the same at
every stage of the source evolution. This follows from our fault model
and, at the same time, is consistent with Ac being independent of L for
actual sources each of which can be treated, after Fukao and

Furumoto [18], as a "frozen" phase in the evolution of a larger source.
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We are going to use the above approach to construct an estimate
for the mean At. We will assume that the subset of Np asperities
which constitute the portion of the barrier perimeter that is close to
rupture (or ruptures under near-critical conditions) itself obeys (35).
For our estimation we will assume this portion to be a half of the
perimeter. For a circular fault we have Np = mRg/d. For the mean of
the Np values of AT, or A‘tp, (34) holds. For the strongest of the Np

asperities we can use (23) and (24) to derive the median Aty,:
= 172
Aty = (A‘tp/2)(1.45Np) re, (36)
The counterpart of this formula
Aty = (<At>/2)(1.45NS)1/2 (37)

relates A1y, to the mean value of At for the entire source, provided we
make the plausible assumption that the strongest of Ng asperities is

located at the perimeter. Combining these results, we get
- 172 _
Aty = At (NJ/NG'2 = Ao/k (38)

which is identical with (13). To sum up, we have not derived a new
estimate for A1, but then we have demonstrated that our model is

internally consistent in this respect.

DISCUSSION

The MA model has yielded several estimates for mean stress drop
on the surface of an asperity: At, = 300 bars based on a "global” Ao
and a given ksp, A1, = 250 bars based on the low-frequency slope in
the acceleration spectrum, At, = 210 bars based on the peak of an
acceleration spectrum, and At, = 260 bars based on near-source peak

accelerations. Although all estimates are in reasonable agreement, one
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should not forget that the important dimensionless parameters ksp and
v, have been assigned nearly a priori values. Note that all three
formulas for At,_, (which have not been written out in explicit form)
include these two parameters in the same combination k;;’zv;‘, while
the formula for At, contains K;ng. That means that the consistency
will not deteriorate, if ksp and v, are varied together so as not to

affect the combination of k 2 whose value must equal 0.055

s \)a
(=0.1X1.352). The reasonablep range for v_ is 0.6 to 1.5 which yields
the range 0.02 to 0.125 for ksp and 1500 to 250 bars for At. Both
ranges look more or less admissible, yet the value as high as 1500
bars for the mean At and the value as low as 0.02 for ksp seemed to
be unlikely. Our final estimates are: ksp = 0.04-0.125, v_ = 0.85-1.5,
At = 750-250 bars, and R, = 0.6-0.9 km.

A few more points seem to be worthy of consideration. Agree-
ment has been found between the estimates of the stress drop
distribution function for asperities based on a_ . (M), on the
approximate constancy of a_ . near the fault, and on the consider-
ations related to the source dynamics.

Should our conclusion about the a = 2 power law for At and for
accelerogram peaks find corroboration, that would mean that the use
of the quasistationary Gaussian approximation to describe near-field
accelerograms is not entirely correct. It would then be reasonable to
use an alternative procedure for describing and modeling the
accelerogram on the basis of the present model by superposing
comparatively infrequent pulses due to specific asperities.

We have not touched upon the important problem of how
asperities are distributed by size. The fact that the estimate A1,
based on the spectral peak is considerably lower than the estimate At,
based on the low-frequency radiation indicates that, as might be
expected, asperities are not quite of the same size. This conclusion
can also be reached from a comparison of the size estimates in Table

[ with the mean size. Nevertheless, the presence of a more or less
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pronounced peak in the spectra of many accelerograms permits us to
regard a source model with asperities of the same size as a

reasonable first approximation.

CONCLUSIONS

1. It is proposed that the rupture of an asperity be considered as
a typical subsource radiating a short-period pulse from the source of
a large earthquake and as the principal component of a small earth-
quake souce.

2. The results of S. Das and B.V. Kostrov were used to put
forward a simple theory for seismic radiation from a single asperity
and from a set of many asperities. The seismic force of an asperity F,
was defined as the basic parameter which controls the low frequency
spectral branch of seismic radiation.

3. The experimental data on near-field peak accelerations and on
the level of far-field spectra are consistent and indicate a typical
stress drop at an asperity, A1, of the order of a few hundred bars.

4. Evaluation of barrier (asperity) strength combined with the
Fukao-Furumoto hypothesis of stepwise self-similar fault evolution
yielded a power law, "heavy-tailed" distribution of asperities according
to strength. It agreed with experimental data on peak accelerations.

5. It is proposed to describe and model the accelerogram as a
sum of poorly overlapping pulses due to individual asperities that obey

a power-law distribution of the parameter Art.
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