Богданов В.В., Павлов А.В.

УДК 550.34:551.510.413.5

ОЦЕНКА ПРОГНОСТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ИОНОСФЕРНЫХ ПРЕДВЕСТНИКОВ ДЛЯ КАМЧАТСКОГО РЕГИОНА

Богданов В.В., Павлов А.В.

Институт космофизических исследований и распространения радиоволн ДВО РАН, с. Паратунка, Камчатский край, vbogd@ikir.ru, pavlov@ikir.ru

Введение

Исследование солнечно-земных связей выявило прямую зависимость между солнечной активностью и процессами в магнитосфере, ионосфере и литосфере. Однако существует и обратная связь, определяющая влияние литосферных процессов сейсмоактивных регионов на ионосферу и магнитосферу. Современными исследованиями установлено, что земная кора оказывает влияние на физические процессы, протекающие в верхних геосферных оболочках. В сейсмоактивных регионах любые аномальные изменения в поведении параметров ионосферы, формирующееся на фоне регулярного суточного изменения характеристик ионосферы, обусловленного влиянием Солнца, могут дать информацию о процессах подготовки землетрясений [6, 8]. В свою очередь, каждый сейсмоактивный регион характеризуется своими, наиболее информативными особенностями (аномалиями) в поведении параметров ионосферы, которые могут быть отождествлены с предвестниками землетрясений. В Камчатском регионе к таким особенностям, как показывают многолетние исследования динамики ионосферных параметров накануне землетрясения, можно отнести следующие [1, 2, 7]:

1) высыпание от нескольких часов до нескольких суток до землетрясения заряженных частиц из радиационных поясов в ионосферу (образование К-слоя);

2) формирование за 1–5 суток до землетрясения диффузионного спорадического слоя Es (Esspread) и спорадического слоя Es типа r;

3) за 1–5 суток на фоне развития магнитной бури (в осенние и весенние периоды) аномальное повышение критической частоты foF2 (рост концентрации электронов), превышающее медианные значения (при обычном развитии магнитосферной бури в ионосфере за счет вихревого электрического поля возникает дрейф, который приводит к смещению электронов на большие высоты и к уменьшению их концентрации).

4) формирование за 1–3 суток на фоне спокойной магнитосферы диффузионного слоя F2 (F2-spread) длительностью в несколько часов;

5) за 1–3 суток расслоение слоя F2 по частоте и высоте (режимы "H" и "V"), так называемые перемещающиеся ионосферные возмущения.

С целью определения наиболее информативных ионосферных предвестников в данной работе была проведена оценка их прогностической эффективности для землетрясений с энергетическими классами $K_s \ge 11.5$ ($M \ge 5.0$), $K_s \ge 12.5$ ($M \ge 5.5$), $K_s \ge 13.5$ ($M \ge 6.0$) и $K_s \ge 14.5$ ($M \ge 6.5$).

Исходные данные

В работе использованы данные радиофизических наблюдений, выполненные средствами вертикального радиозондирования. Автоматическая ионосферная станция (АИС) вертикального радиозондирования расположена в с. Паратунка ($\varphi = 52.97^{\circ}$ с.ш., $\lambda = 158.24^{\circ}$ в.д.). Наблюдения проводятся один раз в 15 минут в импульсном режиме на частотах от 1 до 15 МГц. На рис. 1 представлены ионограммы, содержащие аномалии, соответствующие особенностям 1) (рис. 1а), 2) (рис. 1б) и 5) (рис. 1в), перечисленные в предыдущем разделе. В качестве примера, в табл. 1 представлено время (UT) проявления ионосферных возмущений за период 07.11.2013–12.07.2013 гг., а на рис. 2 приведены отклонения критической частоты *foF2* от медианных значений и суммарные суточные значения индексов геомагнитной активности ΣK за этот же период. Как видно из табл. 1 и рис. 2 за 3 суток перед землетрясением, произошедшим в 12.11.2013 г. с координатами эпицентра $\varphi = 54.64^{\circ}$ с.ш., $\lambda = 162.44^{\circ}$ в.д., глубиной гипоцентра h = 67 км и энергетическим классом $K_s = 15.3$, наблюдалось образование К-слоя, Es-spread, Es типа г, F2-spread, расслоение F2 высоте, а также превышение в 09.11.2013 г. значений *fo*F2 над медианными не менее чем на 20% на фоне возмущённой магнитосферы ($\Sigma K = 21$). В дальнейшем в работе критическая частота *fo*F2 её медианных

значений f_{med} , вычисленных за предыдущие 30 суток, не менее чем на 20% ($\Delta f_0 F_2/f_{\text{med}} \ge 0.2$) на фоне развития магнитносферной бури ($\Sigma K \ge 20$). Также диффузионный слой F2 (F2-spread) рассматривался как предвестник при спокойной или умеренно-возмущённой магнитосфере ($\Sigma K \le 17$).

Рис. 1. Примеры аномального поведения параметров ионосферы: а) К-слой; б) диффузионный спорадический слой Es (Es-spread); в) расслоение F2 по высоте (режим "H").

Ионосферные возмущения	07.11.2013	08.11.2013	09.11.2013	10.11.2013	11.11.2013	12.11.2013
К-слой			10:15-11:00		9:45–10:00; 10:30–10:45	
Es-spread				06:15-06:30		
F-spread					09:15-09:30	11:15-14:00
расслоение F2 по высоте			22:30-22:45		02:15; 08:15	01:15-01:30, 03:30-03.45, 04:30-04:45
расслоение F2 по частоте						07:15–07:30, 08:00–08:15
Es типа r			15:00-18:15	18:00-18:15	16:00-18:00	

Таблица 1. Длител	іьность ионосф)e	рных возмуще	ний за пе	риод О	7.11.201	3-12.11.	2013 гг.

Рис. 2. Временные ряды относительных отклонений критической частоты foF2 от её медианных значений f_{med} ($\Delta foF2/f_{med}$) за период 07.11.2013–12.11.2013 гг.

Для анализа использован каталог землетрясений Камчатского филиала Федерального исследовательского центра "Единая геофизическая служба РАН" [10] за 2013–2018 гг.

Методика оценки прогностической эффективности предвестников землетрясений

С целью отбора наиболее информативных ионосферных предвестников были вычислены следующие параметры: надежность предвестника R, достоверность предвестника V, эффективность предвестника J_G по методике А.А. Гусева, эффективность предвестника J_M по методике Г.М. Молчана.

Надежность предвестника *R* определяется как отношения количества землетрясений n_{E_A} , для которых был выделен предвестник, к числу всех землетрясений n_E [5]: $R = n_{E_A}/n_E$.

Достоверность предвестника V определяется как отношение числа предвестниковых аномалий n_{A_F} к общему числу выделенных аномалий n_A [5]: $V = n_{A_F}/n_A$.

Эффективность прогноза по методике А.А. Гусева вычисляется для конкретной пространственной области и определённого энергетического диапазона землетрясений по формуле [3]:

$$J_G = \frac{N_+ / T_{\rm Tp}}{N/T}$$

где T – общее время мониторинга сейсмической обстановки; N_+ – количество землетрясений, соответствующих успешному прогнозу за время T; N – общее количество произошедших землетрясений (имеющих пространственно-временные характеристики, аналогичные прогнозируемым), произошедших за время T; $T_{\rm пр}$ – общее время тревоги (суммарная длительность всех промежутков времени, в которых действовал прогноз по оцениваемому методу в течение общего времени мониторинга). В отсутствие связи "землетрясений-предвестник", т.е. при случайном угадывании, эффективность J_G равна 1. Согласно [4] при $J_G < 1.2$ прогностический признак считается бесполезным, при $1.2 \le J_G < 1.5$ – не очень информативным (но может оказаться эффективным в сочетании с другими признаками), при $J_G \ge 1.5$ предвестник считается полезным.

Эффективность предвестника J_M по методике Г.М. Молчана [9] определяется по формуле $J_M = 1 - v - \tau$, где $\tau = T_{\rm rp}/T$ — мера тревоги; $v = 1 - N_+/N$ — доля пропусков цели. Для случайного прогноза $J_M = 0$, а для идеального (без пропуска цели и с нулевым временем тревоги) — $J_M = 1$.

Результаты расчётов параметров V, R, J_G и J_M представлены в таблицах 2-5. Вычисления проводились для сейсмических событий прогнозируемых энергетических классов $K_S \ge 11.5$, $K_S \ge 12.5$, $K_S \ge 13.5$ и $K_S \ge 14.5$, произошедших на глубинах до 100 км на расстояниях до r = 500 км от пункта ионосферных наблюдений ИКИР ДВО РАН на Камчатке. Период наблюдений равным $\Delta T = 2013-2018$ гг. (весенние и осенние сезоны), период ожидания землетрясений был задан равным $T_{\text{ож}} = 5$ суток.

Ионосферное возмущение	К-слой	Es-spread	Es-r	f _o F2	F-spread	Рассл. F2 (H)	Рассл. F2 (V)
N_+	52	35	64	32	97	65	58
N	100	107	100	96	102	96	94
n_{A_E}	52	35	64	32	97	65	58
n_A	205	198	278	109	799	393	269
V	0.25	0.18	0.23	0.29	0.12	0.17	0.22
R	0.52	0.33	0.64	0.33	0.95	0.68	0.62
J_G	1.18	0.9	1.29	1.11	1.06	1.15	1.25
τ	0.44	0.36	0.5	0.3	0.9	0.59	0.49
v	0.48	0.67	0.36	0.67	0.05	0.32	0.38
J_M	0.08	-0.03	0.14	0.03	0.05	0.09	0.13

Таблица 2. Прогностическая эффективность ионосферных возмущений для землетрясений с $K_S \ge 11.5$

Диаграммы Молчана для ионосферных предвестников с наибольшими значениями *J_M* для рассматриваемых порогов энергетического класса представлены на рис.3–6.

Рис. 3. Диаграммы Молчана для K-слоя (а), Еs типа r (б) и расслоения F2 по частоте (в) при прогнозировании землетрясений с энергетическим классом $K_s \ge 11.5$.

Ионосферное возмущение	К-слой	Es-spread	Es-r	$f_{\rm o} F2$	F-spread	Рассл. F2 (H)	Рассл. F2 (V)
N_+	24	17	32	15	44	31	29
Ν	43	49	45	43	46	44	41
n_{A_E}	24	17	32	15	44	31	29
n_A	205	198	278	109	799	393	269
V	0.12	0.09	0.12	0.14	0.06	0.08	0.11
R	0.56	0.35	0.71	0.35	0.96	0.7	0.71
J_G	1.14	0.9	1.31	1.03	1.02	1.11	1.33
τ	0.49	0.39	0.54	0.34	0.94	0.64	0.53
ν	0.44	0.65	0.29	0.65	0.04	0.3	0.29
J_M	0.07	-0.04	0.17	0.01	0.02	0.06	0.18

Таблица 3. Прогностическая эффективность ионосферных возмущений для землетрясений с K_S ≥ 12.5

Рис. 4. Диаграммы Молчана для К-слоя (а), Еѕ типа г (б) и расслоения F2 по частоте (в) при прогнозировании землетрясений с энергетическим классом *K*_S ≥ 12.5.

Таблица / Т	Ірогностинеская эф	фективность и	ouochenuuv	возмушений лля	земпетрясений (K > 135
таолица –. т	трогностическая зу	фективноств и	опосферных	возмущении для	землетриссний	$M_{S} \ge 10.0$

Ионосферное возмущение	К-слой	Es-spread	Es-r	f _o F2	F-spread	Рассл. F2 (H)	Рассл. F2 (V)
N_+	11	9	13	9	18	13	14
N	17	20	18	17	19	17	17
n_{A_E}	11	9	13	9	18	13	14
n _A	205	198	278	109	799	393	269
V	0.05	0.05	0.05	0.08	0.02	0.03	0.05
R	0.65	0.45	0.72	0.53	0.95	0.76	0.82
J_G	1.25	1.12	1.27	1.52	0.99	1.15	1.47
τ	0.52	0.4	0.57	0.35	0.96	0.66	0.56
v	0.35	0.55	0.28	0.47	0.05	0.24	0.18
J_M	0.13	0.05	0.15	0.18	-0.01	0.1	0.26

Рис. 5. Диаграммы Молчана для К-слоя (а), foF2 (б) и расслоения F2 по частоте (в) при прогнозировании землетрясений с энергетическим классом *K*_S ≥ 13.5.

Ионосферное возмущение	К-слой	Es-spread	Es-r	$f_{\rm o}F2$	F-spread	Рассл. F2 (H)	Рассл. F2 (V)
N_+	6	4	5	4	7	5	5
N	7	7	6	7	7	6	6
n_{A_E}	6	4	5	4	7	5	5
n_A	205	198	278	109	799	393	269
V	0.03	0.02	0.02	0.04	0.01	0.01	0.02
R	0.86	0.57	0.83	0.57	1	0.83	0.83
J_G	1.64	1.4	1.43	1.59	1.03	1.23	1.45
τ	0.52	0.41	0.58	0.36	0.97	0.68	0.57
v	0.14	0.43	0.17	0.43	0	0.17	0.17
J_M	0.34	0.16	0.25	0.21	0.03	0.15	0.26

Togarne 5 D	norreganization and	harmon and maria	hanner		magazzuri a V	<u> 11 E</u>
гаолина э. п	погностическая эф	фективность ионос	рерных возм	ушений лля землет	рясении с Ка	14.5
			T - P			,

Рис. 6. Диаграммы Молчана для К-слоя (а), Еѕ типа г (б) и расслоения F2 по частоте (в) при прогнозировании землетрясений с энергетическим классом *K*_S ≥ 14.5.

На диаграммах Молчана диагональ $\tau + \nu = 1$, соединяющая точки (0;1) и (1;0) соответствует случайному прогнозу. Для этой диагонали построены доверительные интервалы для уровней значимости $\alpha = 0.01$ и $\alpha = 0.05$. Если значения (τ , ν), полученные для диапазонов лежат под нижней границей 99% доверительного интервала, то это можно интерпретировать как высокую степень надёжности выявленной связи рассматриваемого предвестника с землетрясениями рассматриваемого энергетического диапазона.

Выводы

Достоверность V рассматриваемых ионосферных предвестников снижается с увеличением прогнозируемого энергетического класса землетрясений. Наибольшей достоверностью V = 0.29 обладает ионосферный параметр foF2 для землетрясений с $K_s \ge 11.5$, а наименьшей V = 0.01 - F2-spread и расслоение F2 по высоте (режим "H") для землетрясений с $K_s \ge 14.5$. Надёжность R ионосферных предвестников возрастает с увеличением прогнозируемого энергетического класса землетрясений. Наименьшей надёжностью R = 0.33 обладают ионосферные параметры foF2 и Esspread для землетрясений с $K_s \ge 11.5$, а наибольшей надёжностью R = 0.33 обладают ионосферные параметры foF2 и Esspread для землетрясений с $K_s \ge 11.5$, а наибольшими значениями эффективности J_G и J_M обладают следующие ионосферные параметры: К-слой, foF2, расслоение F2 по высоте (режим "V") и Es типа г для землетрясений с $K_s \ge 14.5$. Для меньших значений K_s прогнозируемых землетрясений эти ионосферные параметры менее информативны, поэтому для повышения эффективности J_G и J_M обладают F-spread, Es-spread и расслоение F2 по высоте (режим "H"), поэтому их использование в прогноза землетрясений рассматриваемых энергетических диапазонов не приведёт к повышению эффективности прогноза.

Список литературы

1. Богданов В.В., Бузевич А.В., Виницкий А.В., Дружин Г.И., Купцов А.В., Поддельский И.Н., Смирнов С.Э., Шевцов Б.М. О влиянии солнечной активности на атмосферные и сейсмические процессы Камчатки // Комплексные сейсмологические и геофизические исследования Камчатки. К 25-летию Камчатской опытнометодической сейсмологической партии ГС РАН. Петропавловск-Камчатский: КОМСП ГС РАН, 2004. С. 259–278.

2. Богданов В.В., Кайсин А.В., Павлов А.В., Полюхова А.Л., Душкина С.М., Гашева О.А. Аномальное поведение ионосферных параметров накануне и после серии землетрясений 28.02–01.03.2013 г. // Сильные камчатские землетрясения 2013 года. Петропавловск-Камчатский: Новая книга, 2014. С. 127–135.

3. Гусев А.А. Прогноз землетрясений по статистике сейсмичности. Сейсмичность и сейсмический прогноз, свойства верхней мантии и их связь с вулканизмом на Камчатке. Новосибирск: Наука, 1974. С. 109–119.

4. Завьялов А.Д. Среднесрочный прогноз землетрясений. М.: Наука, 2006. 254 с.

5. *Салтыков В.А.* О возможности использования приливной модуляции сейсмических шумов в целях прогноза землетрясений // Физика Земли. 2017. № 2. С.84–96.

6. Сорокин В.М., Чмырев В.М., Похотелов О.А., Липеровский В.А. Обзор моделей литосферноионосферных связей в периоды подготовки землетрясений // Краткий прогноз катастрофических землетрясений с помощью радиофизических наземно-космических методов. М.: ОИФЗ РАН, 1998/ С. 64–85.

7. Bogdanov V.V., Kaisin A.V., Pavlov A.V., Polyukhova A.L., Meister C.-V. Anomalous behavior of ionospheric parameters above Kamchatka peninsula before and during seismic activity // Physics and Chemistry of the Earth. 2017. Vol. 98. P. 154–160.

8. Liperovskaya, E.V., Bogdanov, V.V., Biagi, P.-F., Meister, C.-V., Liperovsky, V.A., Rodkin, M.V. Day-time variations of foF2 connected to strong earthquakes. // Nat. Hazards Earth Syst. Sci. 2009. № 9. P. 1–7.

9. Molchan G.M. Strategies in strong earthquake prediction //Phys. Earth and Planet. Inter. 1990. V. 61. P. 84–98.

10. http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php.