ИЗУЧЕНИЕ ПРИЛИВНЫХ ВАРИАЦИЙ СИЛЫ ТЯЖЕСТИ В ЗОНЕ ПЕРЕХОДА ОТ КОНТИНЕНТА К ЯПОНСКОМУ МОРЮ

Валитов М.Г., Прошкина З.Н., Колпащикова Т.Н., Кулинич Р.Г.

Тихоокеанский океанологический институт им. В.И. Ильичева ДВО РАН, г. Владивосток, valitov@poi.dvo.ru

Введение

Изучение лунно-солнечных приливных вариаций гравитационного поля – достаточно развитое направление исследований в мировой геофизической науке [1]. В России подобные исследования в основном сосредоточены в европейской части, на Кавказе и в Сибири. На Дальнем Востоке эти исследования проводятся относительно недавно и включают несколько пунктов наблюдения приливных вариаций в Хабаровском крае, на Камчатке, Сахалине, а с 2010 г. подобный мониторинг организован лабораторией гравиметрии Тихоокеанского океанологического института им. В.И. Ильичева ДВО РАН (ТОИ ДВО РАН) [2] на морской экспериментальной станции (МЭС) «м. Шульца» (рис.1), расположенной на одноименном мысе полуострова Гамова, на юго-западном побережье залива Петра Великого (Японское море), бухта Витязь. Целью этого мониторинга является изучение возможной корреляции приливных и нерегулярных изменений силы тяжести с геодинамикой, гидродинамикой и сейсмогенными процессами в япономорском регионе.

Рис. 1. Обзорная схема расположения стационарного гравиметрического пункта (СГП), СГП отмечен звездой.

Методика наблюдения и подготовка данных

Гравиметр установлен в специально оборудованном подвальном помещении с пассивной термостабилизацией. Прибор непосредственно установлен на бетонном постаменте, который, в свою очередь, находится в неглубоком шурфе, заложенном непосредственно на скальном основании. В целях обеспечения пассивной самозащиты гравиметра, между дном шурфа и низом постамента была сделана песчаная прослойка толщиной 50 см.

В первые два года исследования проходили в летние месяцы и носили опытно-методический характер. В 2010 году измерения выполнялись 52 суток, в 2011 – 107 суток. Начиная с июня 2012 года, и по настоящее время ведется беспрерывная регистрация вариаций гравитационного поля

Земли. Регистрация вариаций гравитационного поля выполняется высокоточным приливным гравиметром gPhone № 111 (Місго-g LaCoste Inc., USA). Точность измерений не хуже ±0.005 мГал. Из-за того, что в гравиметре чувствительный элемент подвешен не на кварцевой, как это часто бывает с подобными приборами, а на металлической пружине, смещение нуль-пункта прибора близко к линейному, не более 1.5 мГал/месяц, чаще всего не превышает 500 мкГал/месяц. В настоящее время длина временного ряда наблюдений с частотой 1 Гц составляет более 2633 суток (рис. 2). Это позволило уточнить амплитуду и фазу основных суточных и полусуточных приливных волн (O₁, M₁, P₁S₁, K₁, M₂, S₂, K₂, M₃) и оценить эти характеристики для длиннопериодных волн (Ssa, Mm, Mf, Mtm).

Подготовка данных для последующей обработки наблюдений выполнялась по стандартной методике в программе Tsoft [5]. На первом этапе исходные наблюдения очищались от помех, вызванных, в основном, землетрясениями, затем сглаживались методом наименьших квадратов и интерполировались с интервалом 1 час.

Анализ наблюдений

На первом этапе исследования по сглаженным значениям рассчитывался спектр (рис. 3), где, благодаря достаточной длине записи, нам удалось выделить, в том числе, длиннопериодные волны. На представленном спектре уверенно выделяются главные суточные и полусуточные волны $(O_1, P_1, K_1, S_1, M_2, K_2, S_2)$. Наибольшую амплитуду имеет полусуточная волна M_2 . Суточные волны P_1, S_1, K_1 и полусуточные S_2, K_2 имеют, соответственно, очень близкие частоты, поэтому в спектре они практически неразличимы. Второстепенные волны $(2Q_1, Q_1, M_1, J_1, 2N_2, N_2, L_2)$ также выделены в спектре, но имеют гораздо меньшие амплитуды. Из группы третьсуточных волн нам удалось идентифицировать только волну M_3 . В длиннопериодной части спектра нам удалось выделить волны Mm, Mf. В спектральной записи более низкочастотной области, выделяются трудно идентифицируемые пики, среди которых, возможно, солнечная деклинационная волна (Ssa) с периодом половины тропического года (182.621095 суток или 0.0054758 цикл/сутки), остальные пики в низкочастотной области нам идентифицировать пока не удалось.

Для оценки количественных показателей амплитудных и фазовых характеристик были рассчитаны приливные параметры (б-фактор – отношение амплитуд наблюденной волны к её теоретическому (модельному) значению и фазовый сдвиг α – разность фаз прихода наблюденной и теоретической волн) [1, 3, 6] (Таблица 1). Расчеты показывают, что основные параметры главных волн суточного и полусуточного цикла (К1, О1, Р1, М2, S2 - показаны в таблице полужирным шрифтом) определены, учитывая отношение сигнал/шум, достаточно надежно. Среднеквадратическая ошибка (СКО) б-фактора всех волн суточного и полусуточного цикла не превышает тысячных долей, СКО задержки фаз а не более 0.2°, что говорит об уверенном их выделении. Второстепенные приливные волны (Q₁, M₁, J₁, 2N₂, N₂, L₂, M₃) более зашумлены. Зашумленность второстепенных волн суточного и полусуточного цикла, скорее всего, связана с внешними факторами, влияющими на показания гравиметра (сейсмический шум, морской накат, атмосферные явления и др.).

В низкочастотном диапазоне отношение сигнал/шум не превышает 6.5, СКО δ-фактора изменяется от 0.14 до 0.74. Наиболее стабильной длиннопериодной волной оказалась недельная волна Mf.

Рис. 3. Спектр вариаций гравитационного поля Земли. Период наблюдений 2306 суток

Волны	Амплитуда,	Cumua a/auna a	б-фактор		задержка фаз						
	мкГал	Сигнал/шум	δ	СКО	α, °	СКО					
Суточные и полусуточные волны (длина записи 2306 дней)											
Q ₁	68.442	178.9	1.15517	0.00646	-0.0636	0.3202					
O ₁	359.616	940.1	1.1621	0.00124	0.1405	0.0609					
M_1	28.418	74.3	1.16769	0.01572	0.9047	0.7712					
P ₁	166.681	435.7	1.15761	0.00266	-0.0251	0.1315					
\mathbf{S}_1	4.674	12.2	1.37332	0.11239	-33.2389	4.6892					
K ₁	497.263	1300	1.14257	0.00088	-0.0141	0.0441					
J_1	28.549	74.6	1.17308	0.01572	0.8057	0.7677					
OO_1	15.342	40.1	1.15227	0.02873	-0.3228	1.4286					
2N ₂	14.266	56.6	1.14578	0.02026	-0.0743	1.013					
N_2	90.567	359.1	1.16159	0.00324	0.72	0.1596					
M_2	475.748	1886.1	1.16826	0.00062	0.9836	0.0304					
L ₂	13.499	53.5	1.17274	0.02191	0.4618	1.0706					
S_2	224.078	888.4	1.1827	0.00133	0.9756	0.0645					
K ₂	61.069	242.1	1.18587	0.0049	0.5997	0.2366					
Третьсуточная волна (длина записи 2036 дней)											
M ₃	6.325	24.7	1.07207	0.04345	0.6116	2.322					
Длиннопериодные волны (длина записи 2036 дней)											
Ssa	6.494	1.9	0.58766	0.30482	6.481	29.7188					
MM	4.568	1.4	0.36409	0.26846	-6.5405	42.2475					
MF	22.007	6.5	0.92664	0.14184	4.6739	8.7701					
MTM	7.153	2.1	1.57302	0.74082	-13.657	26.9837					

Таблина	1.	Основные	парамет	ры п	риливных	волн
таолица	•••	Concombio	mapamer		philiphilphilphil	DOMIN.

Помимо вариаций гравитационного поля нами зафиксированы многочисленные ренакции прибора, вызванные землетрясениями. За период зафиксировано множество эффектов от крупных землетрясений, с магнитудой от 4.4 до 8.2 (рис.4), подавляющая часть землетрясений сосредоточена в Тихоокеанском регионе. Эпицентры землетрясений, как правило, приурочены к глубоководным желобам и их ближайшим окрестностям. Отдельные землетрясения зафиксированы в зоне сочленения горных систем Тян-Шаня и Тибета, а, также в южном Приэльбрусье и на восточной побережье Персидского залива.

Рис. 4. Карта схема эпицентров землетрясений, зарегистрированных гравиметром в 2018 году. 1 – ранжирование цветом землетрясений по глубине гипоцентра, 2 – пропорциональное отражение магнитуды землетрясений, 3 – обозначений места наблюдений. Серым цветом показаны землетрясения [4] которые не удалось идентифицировать в записи гравиметра.

05.04.13 13:00 - местное землетрясение Н=561.9, М=6.3

Рис. 5. Эффект в записи гравиметра от землетрясения и техногенного источника. Н – глубина гипоцентра, М - магнитуда

Самое удаленное землетрясений было зафиксировано в Атлантическом океане, произошедшее в районе Сандвечевых островов. В Японском море было зафиксировано три из четырех глубокофокусных землетрясения, еще два землетрясения было зафиксировано в относительной близости от гравиметрического пункта на континенте. Хотя зарегистрированные эффекты нельзя рассматривать как аномальные вариации гравитационного поля (перемещение маятника прибора вызвано не изменением силы тяжести, а ускорениями, связанными с перемещением постамента), гравиметр, в данном случае, работает как сейсмограф с большим динамическим диапазоном, дополняя тем самым записи сейсмостанции расположенной на МЭС «м.Щульца».

Еще одним из факторов, отраженных в записи гравиметра, являются воздействия техногенного характера, в частности – подземные ядерные взрывы, производимые в военных целях Северной Кореей. Учитывая относительно небольшую удаленность пункта наблюдения от северокорейского полигона (не более 230 км), все проводимые там испытания фиксировались в записи прибора. В международных сейсмологических каталогах [4] эти ядерные взрывы отмечаются сейсмическим событием антропогенного происхождения с магнитудой 4.5 – 5.5 и нулевой глубиной гипоцентра. Действительно, в отличии от землетрясений, ядерные взрывы имеют более источника высокочастотные колебания, что обусловлено локальностью его И малые. быстрозатухающие амплитуды колебаний. Для примера мы проанализировали эффект от взрыва и ближайшего землетрясения, произошедшего в непосредственной близости от гравиметрического пункта (рис. 5), но на достаточно большой глубине. Из рисунка следует, что хотя в записи гравиметра амплитуды от этих двух событий сопоставимы, в частотной области наблюдаются разные эффекты. Так энергия землетрясения плавно затухает до частоты 0.001, в то время как энергия взрыва затухает в 10 раз быстрее, а его амплитуда меньше амплитуды землетрясения в 4 раза.

Заключение

Гравитационное поле Земли несет в себе огромное количество информации о внутреннем строении планеты. К сожалению, извлечь и интерпретировать (как качественно, так и количественно) эту информацию, в силу ее интегрального эффекта, представляется весьма трудоемкой задачей с часто неоднозначным результатом. Основной проблемой при изучении корреляции приливных и нерегулярных изменений силы тяжести с геодинамикой, гидродинамикой и сейсмогенными процессами в япономорском регионе является сейсмический шум, порождаемый как непосредственно приливными деформациями земной коры, так и воздействием гидросферы и атмосферы, особенно во время прохождения циклонов и тайфунов. В этом шуме «тонет» слабый полезный сигнал, вызванный подготовкой геодинамических событий. Учитывая, что более «тихие» места наблюдений, расположены вдали от областей с активной геодинамикой, остается идти по пути защиты прибора от вибраций. Выходом может стать создание асейсмичных постаментов, способных минимизировать воздействие микросейсм на прибор. В этом случае появится возможность независимо анализировать сейсмометрические и гравиметрические данные, выделять слабые сигналы в поле вариаций силы тяжести.

Исследования проводятся в рамках Госзадания ТОИ ДВО РАН, Тема 0271-2019-0002 «Пространственно-временные изменения геофизических полей, их связь со структурой, геодинамикой и сейсмотектоническими процессами в литосфере дальневосточных морей России и их обрамлении» (Гос. Рег. № АААА-А17-117030110032-3).

Список литературы

1. Мельхиор П. Земные приливы. М.: Мир, 1968. 483 с.

2. Прошкина З.Н., Валитов М.Г., Кулинич Р.Г., Колпащикова Т.Н. Изучение приливных вариаций силы тяжести в зоне перехода от континента к Японскому морю // Вестник КРАУНЦ. Серия: Науки о Земле. 2015. № 3. Вып. 27. С. 71–79.

3. Dehant, V. Tidal parameters for an inelastic Earth // Phys. Earth Planet. Inter. 1987. V. 49. No. 1-2. P. 97–116.

4. U.S. Geological Survey (USGS). Search Earthquake Catalog. URL: https://earthquake.usgs.gov/earthquakes/search/.

5. Van Camp, M., Vauterin, P. TSoft: graphical and interactive software for the analysis of time series and Earth tides // Computers & Geosciences. 2005. V. 31. No.5. P. 631–640.

6. Wenzel H.G. The nanogal software: Earth tide data processing package ETERNA 3.30 // Bull. Inf. Marées Terrestres. 1996. V. 124. P. 9425–9439.

7. Wenzel V., Defraigne P., Wahr J. Tides for a convective Earth // J. Geoph. Res. 1999. V.104. No. B1. P.1035–1058.