Проблемы комплексного геофизического мониторинга Дальнего Востока России. Труды Седьмой научно-технической конференции 29 сентября–5 октября 2019 г. г. Петропавловск-Камчатский

УДК 53.087.45

СИСТЕМА НАБЛЮДЕНИЙ ЗА ПАРАМЕТРАМИ ГЕОФИЗИЧЕСКИХ ПОЛЕЙ ВБЛИЗИ ВУЛКАНА ЭБЕКО

Будилов Д.И., Фирстов П.П., Акбашев Р.Р., Макаров Е.О.

Камчатский филиал ФИЦ «Единая геофизическая служба РАН», г. Петропавловск-Камчатский, budilov@emsd.ru

Введение

На севере Курильской островной дуги располагаются два активных вулкана. Стратовулкан Эбеко (50°41′20″ с. ш., 156°00′54″ в. д) высотой 1156 м н.у.м. по частоте извержений является одним из активнейших вулканов дуги и состоит из нескольких четвертичных вулканических конусов. Он располагается в северной части хребта Вернадского на острове Парамушир в 7 км от г. Северо-Курильска (рис. 1). С начала голоценовой эры все извержений, как правило, составляла 2-4 года, а периоды межэруптивной деятельности 20-30 лет [2, 6]. Последнее извержение, которое продолжается в настоящее время, началось 8 ноября 2016 г. Слабые эксплозии с различной загруженностью пеплом происходят из двух-трех эруптивных центров как поочередно, так и одновременно. Высота эруптивного облака редко превышает 3 км, а длительность эксплозий составляет от 1 до 40 минут. Сильные пепловые выбросы сопровождаются звуком с низкой частотой, который слышен на расстояниях до 7 км [5].

На расстоянии 30 км к северо-западу от острова Парамушир и 70 км к юго-западу от полуострова Камчатка на острове Атласова располагается Вулкан Алаид, который является самым северным и самым высоким (2339 м н.у.м.) вулканом Курильских островов (рис.1). Алаид – двойной стратовулкан, поднимающийся со дна моря, древний фундамент почти полностью перекрыт молодыми продуктами извержений. Его склоны покрыты шлаком и лишены эрозионных рытвин, кроме юго-восточного склона, эродированного депрессией шириной 2 км в верхней части и 3,5 км – в нижней [2]. Динамика последнего его извержения стромболианского типа с октября 2015 г. по апрель 2016 г. достаточно детально описана в работе [1] на основании акустического мониторинга.

В данной работе дается описание аппаратурно-информационной системы наблюдения за некоторыми параметрами геофизических полей созданной в Камчатском филиале ФИЦ ЕГС РАН вблизи вулкана Эбеко, которая может также отмечать и эксплозивную активность вулкана Алаид.

Рис. 1. Схема расположения вулканов Эбеко и Алаид и пункта регистрации комплекса параметров геофизических полей в пункте SKR

Технические характеристики датчиков

В конце 2018 г. на сейсмостанции Сахалинского филиала Федерального исследовательского центра «Единая геофизическая служба РАН» (СФ ФИЦ ЕГС РАН) в г. Севера – Курильск (SKR) был организован стационарный пункт наблюдения за вулканической активностью (SKR) с удаленным доступом управления. На пункте установлена аппаратура, позволяющая осуществлять регистрацию параметров трех геофизических полей.

Долговременные непрерывные наблюдения за вертикальной составляющей электрического поля в атмосферы (E_Z ЭПА), являются экспериментальной основой для исследований локальных электрических эффектов в атмосфере. Эксплозивная активность вулканов, при которой в атмосферу выбрасывается вулканический пепел, образующий эруптивные облака (ЭО), является одним из локальных источников возмущений в E_Z ЭПА. С целью регистрации отклика в поле E_Z ЭПА на прохождение ЭО были установлены на разной высоте два электростатических датчика ЭФ-4 [3].

Для мониторинга инфразвуковых сигналов, возникающих при извержениях вулканов Алаид и Эбеко, установлен микробарометр ISMG-3M с полосой регистрации 0.02-10 Гц в диапазоне амплитуд 0.001-100 Па. Получаемые с него данные позволят вести наблюдение за акустическими сигналами (AC) инфразвукового диапазона в ближней зоне от источника.

Таблица 1. Технические характеристики электростатического флюксметра ЭФ-4, микробарометра ISMG-03M и индикатора радона RADEX MR107

ЭФ-4		ISMG-3M		RADEX MR-107	
Диапазон <i>Е</i> _Z ЭПА	±2 кВ/м	Рабочий диапазон частот	от 0.02 до 4.0 Гц	Диапазон измерений	30-37000 Бк/м ³
Верхняя частота	5 Гц	Режим работы	Непрерывный	Цикл измерения	4 часа
Выходное сопротивление	2 кОм	Максимальная амплитуда Δ <i>Р</i>	не менее 100 Па	Порог срабатывания звукового сигнала	30-37000 Бк/м ³
Выходное напряжение	5 B	Чувствительность	80 мВ/Па	Интерфейс передачи данных	USB
Погрешность измерений	5 мВ	Напряжение питания	12+10% B	Элементы питания	Встроенный аккумулятор
Напряжение питания	10-14 B	Среднее квадратическое значение приведенного ко входу собственного шума	не более 0.001 Па	Время работы от встроенного аккумулятора	140 ч
Температура эксплуатации	-40 - +80 C	Рабочий диапазон температур	от -10°C до 40°C	Рабочий диапазон температур	+10 - +35°C
Режим работы	непрерывный	Обеспечивает работ линию связи до 300 м нагрузку не мен	у на кабельную и и на активную ее 100 кОм Иогрешность 200		20%

Для исследования связи напряженно-деформированного состояния геосреды, обусловленной извержением вулкана Эбеко, рядом с сейсмостанцией SKR был установлен радиометр RADEX MR107 (фирма OOO «КВАРТА-РАД») для регистрации объемной активности подпочвенного радона (ПР). Радиометр осуществляют измерения диффузионным методом с одновременной регистрацией температуры и влажности воздуха. С помощью откачки подпочвенного воздуха из измерительного шпура компрессором в накопительную камеру, в которую устанавливался прибор, был применен

Проблемы комплексного геофизического мониторинга Дальнего Востока России. Труды Седьмой научно-технической конференции 29 сентября—5 октября 2019 г. г. Петропавловск-Камчатский

метод принудительной конвекции [4].

Технические характеристики всех трех датчиков приведены в табл. 1.

Описание программно-аппаратного комплекса пункта SKR

С целью получения данных в близком к реальному времени и осуществлению управлением параметров датчиков пункта SKR был разработан и внедрен программно-аппаратный комплекс. На рис. 2 приведена его принципиальная схема.

Рис. 2. Блок-схема программно-аппаратного комплекса: 1 – датчики, 2 – аналого-цифровой преобразователь, 3 – микрокомпьютер, 4 – персональный компьютер

L-Card E24		RaspberryPi 2		
Диапазон измеряемой напряженности поля	2 кВ/м	Модель процессора	ARM Cortex-A7	
Верхняя граничная частота	5 Гц	Количество ядер процессора	4	
Выходное сопротивление	2 кОм	Частота процессора	900 МГц	
Выходное напряжение	5 B	Размер оперативной памяти	1 Гб	
Среднеквадратичная погрешность измерений	5 мВ	Вид доступа в Интернет	Ethernet (RJ-45)	
Напряжение питания (постоянного тока)	10 - 14 B	Скорость сетевого адаптера	100 Мбит	
Температура эксплуатации	-40 - +80 C	Установленная операционная система	DietPi	
Режим работы	Непрерывный	Необходимое питание	5 B, 1 A, microUSB	

Таблица 2. Технические характеристики АЦП L-Card E24, микрокомпьютера RaspberryPi 2

Аналоговые сигналы с датчиков ЭФ-4 и ISMG-3М через АЦП Е-24 поступают на SD носитель микрокомпьютера RaspberryPi и записываются с часовым интервалом. Технические характеристики АЦП и микрокомпьютера приведены в табл. 2.

Микрокомпьютер позволяет удаленно в автоматическом режиме производить настройку и сбор данных с датчиков, а операционная система DietPi, установленная на микрокомпьютере, позволяет сократить количество потребляемых ресурсов. Суточные данные архивируются и передаются по сети на сервер в КФ ФИЦ ЕГС РАН, где происходит первичная обработка исходных

данных. Программная часть комплекса реализована на языке программирования Python. Для работы с L-Card E24 использовалась библиотека PyE24 [https://bitbucket.org/john_16/pye24lib]. Данные с часовой периодичностью формируются на микрокомпьютере, а затем собираются в суточный архив и отправляются на сервер. На сервере происходит первичная обработка и формируется суточный файл.

Заключение

За период работы программно-аппаратного комплекса пункта SKR было зарегистрировано множество AC от отдельных эксплозий вулканов Эбеко и Алаид. Также были зарегистрированы многочисленные отклики в поле E_Z ЭПА от прохождения ЭО от эксплозивных извержений вулкана Алаид. В качестве примера на рис. 3 приведена запись AC, сопровождавшего извержение 12.08.2019 г., и отклика E_Z ЭПА при прохождении ЭО.

Рис.3. Пример записи AC (a), сопровождавшего извержение 12.08.2019 г., и отклика *E*_Z ЭПА при прохождении ЭО (б). На врезке показан AC с детальной разверткой. Начало отсчета времени соответствует 12.08.2019 г., 03:12:28.

Программно - аппаратный комплекс пункта SKR показал себя надежным и стабильным в работе в течение почти года эксплуатации. В дальнейшем планируется использовать, полученный при разработке данного комплекса опыт, при модернизации и расширения сети пунктов регистрации инфразвуковых сигналов и напряженности электрического поля атмосферы Камчатского филиала ФИЦ ЕГС РАН.

Работа выполнялась в рамках государственного задания по проекту АААА-А19-119031590060-3 и при частичной финансовой поддержке гранта РФФИ 18-35-00175.

Список литературы

1. *Будилов Д.И., Лобачева М.А., Фирстов П.П.* Активность вулкана Алаид в 2015-2016 гг. по акустическим данным // Природные катастрофы: изучение, мониторинг, прогноз. Сб. матер. VI Сахалин. молодеж. науч. школы, 3–8 октября 2016 г., г. Южно-Сахалинск, ИМГиГ ДВО РАН, 2016. С. 220–224.

2. Горшков Г.С. Вулканизм Курильской островной дуги. М.: Наука, 1967. 288 с.

3. Ефимов В.А., Орешкин Д.М., Фирстов П.П., Акбашев Р.Р. Применение электростатического флюксметра "ЭФ-4" для исследований геодинамических процессов // Сейсмические приборы. 2013. Т. 49. № 4. С. 14–24.

4. *Козлова И.А., Юрков А.К.* Методические вопросы измерения содержания радона-222 в почвенном воздухе при мониторинговых наблюдениях // Уральский геофизический вестник. 2005. № 7. С. 31–34.

5. Котенко Т.А., Сандимирова Е.И., Котенко Л.В. Извержения вулкана Эбеко (Курильские острова) в 2016–2017 гг. // Вестник КРАУНЦ. Науки о Земле. 2018. № 1. Вып. 37. С. 32–42.

6. Мелекесцев И.В., Двигало В.Н., Кирьянов В.Ю. и др. Вулкан Эбеко (Курильские о-ва): история эруптивной активности и будущая вулканическая опасность. Ч. 2 // Вулканология и сейсмология. 1993. №4. С. 24–42.

7. https://bitbucket.org/john_16/pye24lib