РЕГИОНАЛЬНЫЕ МАГНИТУДНЫЕ ШКАЛЫ ПО ПОВЕРХНОСТНЫМ ВОЛНАМ ПЕРИОДОВ 40 и 80 С

Чубарова О.С.¹, Гусев А.А.^{1,2}, Викулина С.А.²

¹ Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский, ochubarova@emsd.ru

Введение

Успешный опыт эксплуатации в условиях Дальнего Востока России региональной магнитудной шкалы $M_s(20R)$ по поверхностным волнам периода 20 с [4, 2, 3] дал основания опробовать аналогичный подход для волн более длинных периодов. Нужда в магнитудных оценках такого рода связана с тем фактом, что для задачи оперативного прогноза цунами, чем длиннее период волны, тем надежнее прогноз. Отмечены нередкие случаи, когда на периоде 20 с излучение очага необычно низкое, и в результате по магнитуде $M_s(20)$ можно получить искаженную, заниженную оценку цунамигенного потенциала землетрясения. Использование волн периодов 40 и 80 с могло бы повысить надежность тревог цунами. В идеале следовало бы использовать оценку сейсмического момента, или моментной магнитуды M_{w} , которая наиболее адекватна для характеризации цунамигенного потенциала землетрясения. Однако, эту теоретически привлекательную возможность трудно реализовать. Чтобы сейсмологическими средствами уверенно оценить $M_{\scriptscriptstyle W}$ для очагов землетрясений, порождающих самые мощные, катастрофические цунами ($M_w = 9$ и более), нужно использовать движения с периодами 500-1000 с, в то время как нормативное время подачи тревоги составляет менее 450 с. Использовать волны с периодами диапазона 50-100 с - полезное компромиссное решение.

В работе строится магнитудная шкала по поверхностных волнам периодов 40 и 80 с. Для этого определен стандартный ход с расстоянием (калибровочная кривая) для эмпирических амплитуд на региональных записях группы поперечных и поверхностных волн. Обмер амплитуд проводится после фильтрации в нешироком диапазоне периодов, в полосах с осевыми периодами 40 и 80 с (частоты 0.025 и 0.0125 Гц, ширина полосы около 2/3 октавы). При построении калибровочных кривых проводили нормализацию наблюденных амплитуд, для чего использовали теоретические спектральные функции, вычисленные на основе расчетных значений угловой частоты. Последние оценивали по значениям моментной магнитуды M_w из каталога GCMT на основе известных корреляционных зависимостей. Обработано ~ 1500 трехкомпонентных записей на 12 станциях в диапазоне расстояний 1- 40 градусов. В работе построен первый вариант калибровочных кривых для волн периодов 40 и 80 с. Значения новых магнитуд $M_s(40)$ и $M_s(80)$ численно близки к M_w . Их использование позволит получить приемлемую оперативную оценку магнитуды M_w вплоть до M_w =8.3-8.5 даже в условиях редкой сейсмической сети. Для более высоких магнитуд M_w =8.6-9.6 найденные значения $M_s(40)$ и $M_s(80)$, будут являться оценками M_w снизу, что приемлемо для практических целей.

Исходные данные

В качестве исходного материала в работе использованы записи 433 землетрясений северозападной части Тихоокеанского региона периода 1993-2009 гг. на 12 широкополосных цифровых сейсмических станциях (РЕТ, YSS, MA2, YAK, KAM, ADK, TIXI, BILL, MDJ, INCN, ERM, MAJO), всего ~1500 трехкомпонентных записей каналов ВН. Цифровые записи землетрясений выбирались из архива IRIS DMC (http://www.iris.edu/dMs/wilber.htm) и из базы данных цунами КФ ГС РАН. Глубина очагов землетрясений – до 70 км. Отбирались только те землетрясения, для которых имелась оценка моментной магнитуды M_w в каталоге GCMT (http://www.globalcmt.org/CMTsearch.html). Диапазон магнитуд использованных землетрясений от 4.7 до 8.3. Для обработки исходной цифровой записи применялась программа DIMAS разработки Д.В. Дрознина [1].

Сейсмические станции и эпицентры землетрясений, записи которых были обработаны, представлены на рис. 1.

² Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский.

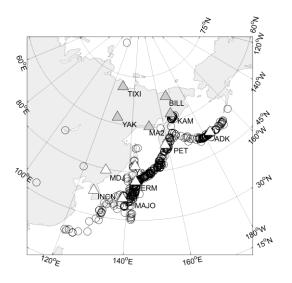


Рис. 1. Карта эпицентров землетрясений северо-западной части Тихоокеанского региона (кружки) и цифровых сейсмических станций (треугольники), использованных при построении калибровочных функций.

Методика построения калибровочных кривых

Для построения калибровочных функций новых региональных магнитуд $M_3(40)$ и $M_3(80)$ была существенно модифицирована методика, ранее примененная для построения региональной магнитудной шкалы $M_s(20R)$ [4]. Для создания шкалы $M_s(40)$ изучали зависимость от расстояния максимальных амплитуд смещения A в поверхностных волнах, пропущенных через полосовой фильтр с осевой частотой 0.025 Гц. Применяли физически реализуемый (каузальный) фильтр Баттерворта четвертого порядка с частотами среза 0.03125 и 0.02 Гц (периоды 32-50 с). Фильтр применяли к сигналу смещения, полученному обратной фильтрацией цифровой записи велосиграфа ВН. Аналогично, для шкалы $M_s(80)$ осевая частота фильтра составляла 0.0125 Γ ц, а частоты среза -0.15625 и 0.01 Гц (периоды 64-100 с). Максимальные амплитуды измерялись во временном окне длительностью 600 с после вступления S-волны ($[t_s, t_s+600c]$, где t_s – время вступления S-волны). Максимальные значения на каждой из трех компонент измерялись в независимые моменты времени. Пример записи землетрясения и проведенных измерений см. рис. 2. Для контроля того, максимумы каких именно волн измеряются, была изучена зависимость между моментом обмера максимальной амплитуды поверхностных волн t_L (отсчет от времени в очаге t_0) и эпицентральным расстоянием Δ . Отметим, что за счет фазового сдвига в полосовом фильтре измеренный момент t_L является кажущимся и отстает от идеального (для случая нулевого сдвига фаз) примерно на полтора периода (запаздывание $dt_f \approx 60$ с для периода 40 с и $dt_f \approx 120$ с для периода 80 с). Выбор данной методики является вынужденным, поскольку в оперативном режиме (реальное время) практически удобный алгоритм фильтрации требует использования физически реализуемого фильтра; обычно применяется рекурсивный цифровой фильтр. Полученные графики $t_L(\Delta)$ см. рис. 3. Там же приведен прямолинейный годограф поверхностной волны Релея. Наблюдаемые скорости равны 2.95 км/с для T=20 с [4], 3.5 км/с для T =40 с и 3.6 км/с для T=80 с. Известная модель ak135 предсказывает более высокие скорости: 3.57, 3.95 и 4.05 км/с для Т=20, 40 и 80 с, соответственно. Расхождение соответствует относительно пониженным скоростям в данном сегменте мантии планеты. Для расчета магнитуды по конкретной станции, основываясь на опыте построения магнитуды $M_s(20R)$, использовали среднеквадратическое значение максимумов амплитуд трех компонент записи.

Как обычно, принимали, что магнитуда определяется по формуле $M = \lg A - \sigma(\Delta)$ (где Δ – эпицентральное расстояние), причем удобно записать $\sigma(\Delta)$ = const- $\tau(\Delta)$. Функцию $\tau(\Delta)$ затухания амплитуд с расстоянием («калибровочную функцию») для периода T подобрали путем повторения нескольких итераций следующей процедуры:

- (1) По текущему варианту $\tau(\Delta)$ привести амплитуды к заданному опорному расстоянию Δ_0 , получив приведенные амплитуды: $\lg A_0 = \lg A \tau(\Delta) + \tau(\Delta_0)$
- (2) Для каждого использованного землетрясения, используя его значение $M_w=M_w(\text{GCMT})$ найти «расчетную» приведенную амплитуду $A_0^{(C)}$ поверхностной волны периода T на расстоянии Δ_0 , принимая ее пропорциональной значению очагового спектра на частоте $f=f_{c0}=1/T$. Для этого выполнялись следующие шаги:
- 2а. Оценить по M_w (GCMT) значение корнер-частоты землетрясения f_c , предполагая, что зависимость между f_c и M_w , следует гипотезе подобия очагов: $\lg(f_c) = (-1/2)(M_w M_{w0}) + \lg f_{c0}$. Параметр M_{w0} имеет смысл «значение M_w для случая $f_c = f_{c0} = 1/T$ »; его точное численное значение, из диапазона 7.5-8, определяется подбором и уточняется на каждой итерации.

- 2b. Определить стандартную спектральную функцию для расчета спектральных поправок согласно варианту обобщенной формулы Бруна в виде $a(f_w, f_c) = \lg(1/(1+(f_w/f_c)^{\gamma}))$. Параметр γ из диапазона 1.3-2 уточняется на каждой итерации.
- 2с. Оценить уровень очагового спектра как $\lg A_0^{(C)} = (1.5\ M_w + {\rm const}) + a(f_T, f_c)$, где $(1.5\ M_w + {\rm const}) {\rm это}$ логарифм очагового спектра при f=0, $f_T=1/{\rm T}$, а f_c и $a(f_w,f_c)$ описаны выше. (3) Зависимость $\lg A_0$ от $\lg A_0^{(C)}$ в идеале должна иметь вид: $\lg A_0 = \lg A_0^{(C)} + {\rm const}$.
- (3) Зависимость $\lg A_0$ от $\lg A_0^{(C)}$ в идеале должна иметь вид: $\lg A_0 = \lg A_0^{(C)} + \text{const.}$ Систематические отклонения от такой связи можно сделать малыми путем подбора параметров M_{w0} и γ . Путем такого подбора найти текущие оценки этих параметров. Окончательные оценки следующие: $M_{w0} = 7.5$ для T = 40 с и $M_{w0} = 7.9$ для T = 80 с; в обоих случаях $\gamma = 1.5$.
- (4) Ход остаточных разностей $\lg A_0 \lg A_0^{(C)}$ в функции Δ должен давать постоянную функцию. Фактические отклонения от постоянной функции можно уменьшить, модифицируя функцию $\tau(\Delta)$, что и выполнялось.

Константы в принятых зависимостях принимали из требования, чтобы новые магнитуды были численно близки к моментной магнитуде M_w в диапазоне магнитуд M_w =7.0-8.4. Для бо́льших магнитуд не было данных. Для меньших магнитуд, в среднем, M_w всегда выше, чем $M_s(T)$.

Результат итеративного поиска устойчив и не зависит от начального приближения. Новые калибровочные кривые см. рис. 4, а разброс невязок после проведенного итеративного поиска см. рис. 5. Окончательные варианты зависимостей $\tau(\Delta)$ приводятся ниже (заданы через узловые точки).

Применение новых шкал

Опишем рекомендуемые калибровочные кривые для определения магнитуд $M_s(40)$, $M_s(80)$ и процедуру их использования в расчетах. Магнитуда $M_s(40)$ в определяется формулой: $M_S(40) = g(A) - \tau_{.0}(\Delta + .670)$, где $\tau_{40}(A)$ новая калибровочная функция, численно определяемая по приведенной ниже процедуре с использованием табл.1; Δ - в градусах, $0.7^{\circ} < \Delta < 40^{\circ}$; A среднеквадратическое по трем каналам значение максимальной («2A»/2) амплитуды смещения на выходе описанного выше каузального цифрового фильтра, в мкм, во временном окне [t_s , t_s +600c]; t_s время вступления S-волны. Максимальная амплитуда соответствует либо поверхностной волне, либо, обычно при $\Delta \leq 3^{\circ}$, неразделимой группе поперечных и поверхностных волн.

Для магнитуды $M_s(80)$ аналогичны формула: $M_S(80) = \mathfrak{Z}(A) - \tau_0(\Delta + 0.115)$ и применяемая процедура. Калибровочные функции $\tau_{40}(\Delta)$ и $\tau_{80}(\Delta)$ задаются своими узловыми значениями для набора узлов Δ , см. табл.1.

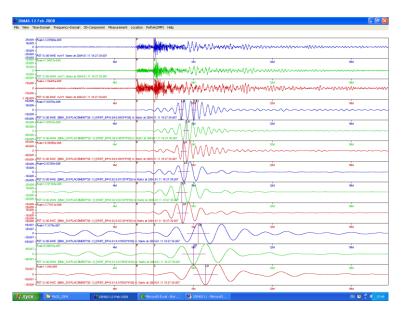


Рис. 2. Пример записи землетрясения и проведенных измерений (копия диалогового окна программы DIMAS). Верхние три трассы – сигналы велосиграфа на компонентах (сверху вниз) ВНЕ, ВНN, ВНZ. Следующие три трассы – результат полосовой фильтрации сигнала смещения для периода 20 с, ниже – для периода 40 с, нижние три трассы - для периода 80 с. Вертикальные линии обозначают моменты вступлений *Р*-и *S*-волн и моменты измерения амплитуд профильтрованных поверхностных волн.

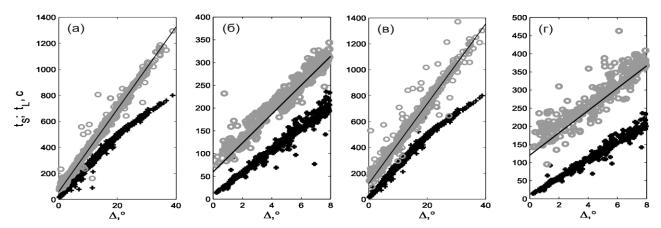


Рис.3. Зависимость момента t_L обмера амплитуды от Δ для смещения на вертикальных компонентах, на выходе физически реализуемого полосового фильтра. Отсчет времени идет от t_0 . На а - полный диапазон времен и расстояний, на б - только малые эпицентральные расстояния, для периода 40 с. Кружки – вертикальная компонента; крестики – вступления S-волн, снятые с записи; в и Γ - аналогичные графики для периода 80 с. Тонкие линии соответствуют групповым скоростям волн Релея: 3.5 км/с для Γ =40 с и 3.6 км/с для Γ =80 с.

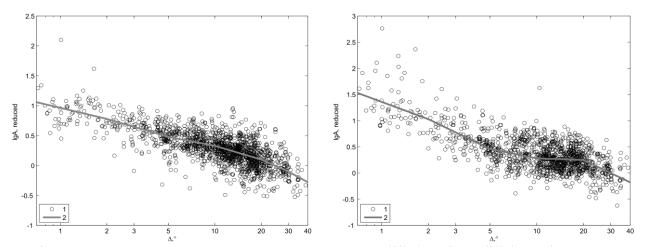


Рис. 4. Нормированные станционные амплитуды для магнитуд $M_s(40)$: (слева) и $M_s(80)$ (справа). 1- наблюденные данные, приведенное среднеквадратичное значение трех компонент, 2 - калибровочная функция для магнитуды $M_s(40)$.

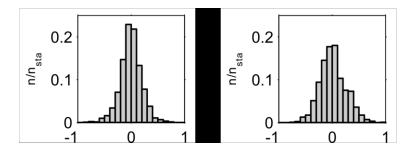


Рис. 5. Распределение невязок индивидуальных нормированных амплитуд для магнитуды. $M_s(40)$ (слева) и $M_s(80)$ (справа).

Таблица 1. Узловые точки калибровочных функций $\tau_{40}(\Delta)$ и $\tau_{80}(\Delta)$ шкалы магнитуд по поверхностным волнам $M_s(40)$ и $M_s(80)$ для набора узловых значений эпицентрального расстояния. Для промежуточных значений Δ при вычислении функций $\tau_{40}(\Delta)$ и $\tau_{80}(\Delta)$ следует использовать линейную интерполяцию по аргументу $\lg(\Delta)$.

Параметры	Эпицентральное расстояние Д, градусы						
	0.7	2	5	10	20	30	40
lg(∆)	-0.1549	0.3010	0.6990	1.0000	1.3010	1.4771	1.6021
$ au_{40}(\Delta)$	1.0600	0.7800	0.4800	0.3300	0.1000	-0.1020	-0.2780
$ au_{80}(\Delta)$	1.5300	1.0300	0.4600	0.2800	0.2500	-0.0020	-0.1780

Точность получаемых оценок можно оценить по невязкам подгонки калибровочных кривых, см. рис. 4. Соответствующее стандартное уклонение составляет 0.20 для $M_s(40)$ и 0.25 для $M_s(80)$). Таким образом, точность оценок не хуже, чем для более традиционной магнитуды $M_s(20R)$.

Были также получены оценки ошибок прогноза значений M_w по принципу $M_w = M_s(40)$ для $M_w > 7$ или по принципу $M_w = M_s(80)$ для $M_w > 7.2$. Средняя ошибка менее 0.03, а стандартное уклонение – 0.25-0.28. Таким образом, при больших магнитудах значения $M_s(40)$ и(или) $M_s(80)$ являются неплохими оперативными оценками M_w даже для случая одиночной станции. Эта возможность проверялась вплоть до $M_w = 8.3$. При еще больших магнитудах оценки подобного рода будут систематически ниже истинных (занижение до 0.2-0.3 ед. M при M_w при около 9.2), что приемлемо при оперативной работе. Поясним, что в случае расхождений в качестве оценки M_w следует использовать большую из двух обсуждаемых магнитуд.

Заключение

На материале достаточного объема (≈1500 записей на 12 станциях) успешно решена задача построения длинннопериодной магнитудной шкалы для оперативных оценок магнитуды в региональной сейсмологии Дальнего Востока России, в первую очередь для целей цунами-службы. Использование волн периодов 40 и 80 с может существенно улучшить надежность прогноза опасного цунами по величине магнитуды. При этом потребное время обработки сигнала для эпицентральных расстояний до 300 км составляет 4-5 мин (см. рис. 3), что приемлемо по временным нормативам подачи тревоги цунами.

Исследование выполнено за счет гранта Российского научного фонда (проект №14-17-00621) в Камчатском филиале Геофизической службы РАН.

Список литературы

- 1. Дрознин Д.В., Дрознина С.Я. Интерактивная программа обработки сейсмических сигналов DIMAS // Сейсмические приборы. 2010. Т. 46. № 3. С. 22-34.
- 2. Чебров Д.В., Гусев А.А. Автоматическое определение параметров цунамигенных землетрясений на Дальнем Востоке России в режиме реального времени: алгоритмы и программное обеспечение // Сейсмические приборы. 2010. Т. 46. № 3. С. 35-57.
- 3. Чебров Д.В., Чебров В.Н., Викулина С.А., Ототюк Д.А. Опыт оценки магнитуд сильных землетрясений в РИОНЦ «Петропавловск» в рамках Службы предупреждения цунами // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Труды Четвертой научнотехнической конференции. Петропавловск-Камчатский. 29 сентября 5 октября 2013 г., г. / Отв. ред. В.Н. Чебров. Обнинск: ГС РАН. 2013. С. 299-303.
- 4. Чубарова О.С., Гусев А.А., Викулина С.А. Двадцатисекундная региональная магнитуда М_s(20R) для Дальнего Востока России // Сейсмические приборы. 2010. Т. 46. № 3. С. 58-63.