КАМЧАТСКАЯ GNSS СЕТЬ КФ ГС РАН, ОБРАБОТКА НАБЛЮДЕНИЙ И ИНТЕРПРЕТАЦИЯ ПЕРЕМЕЩЕНИЙ ВЫЗВАННЫХ ОХОТОМОРСКИМ ЗЕМЛЕТРЯСЕНИЕМ M_w=8.3, 24.05.2013 Г.

Титков Н.Н., Павлов В.М.

Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский, nik@emsd.ru

Описание GNSS сети.

Камчатская региональная сеть постоянных GNSS наблюдений КФ ГС РАН была запущена в конце 1997 года (рис. 1а). Сеть создавалась для изучения деформационного состояния Камчатского полуострова и Командорских островов, определения кинематических параметров движения тектонических плит и блоков, регистрации деформационных проявлений сейсмической и вулканической активности. Сеть охватывает всю территорию Камчатского края. В районах г. Петропавловска-Камчатского и Ключевской группы вулканов сеть сгущена, образую локальные геодинамические полигоны. В настоящий момент в составе сети работают 27 станций КФ ГС РАН и две станции сторонних организаций. Из них: 22 подключены к системе оперативного сбора данных; 6 передают поток наблюдений в реальном времени; 19 станций ведут регистрацию в режиме односекундных наблюдений. Регистрация, передача данных в центр сбора данных и их подготовка для постобработки выполняется полностью в автоматическом режиме. Для потока реального времени применяются протоколы NTRIP (протокол передачи RTCM данных через Интернет). Развернут NTRIP Caster. Постобработка наблюдений осуществляется пакетом GAMIT/GLOBK. Штатный режим обработки — статика в режиме «BASELINE».

Рис.1 Камчатская региональная сеть постоянных GNSS наблюдений КФ ГС РАН. а) 1997 год: б) 2013 год; в) планы развития.

Определение косейсмических перемещений.

Косейсмические смещения определялись по 20 суточному временному ряду (по 10 отчетов до и после события). Применялась методика итеративной обработки направленная на максимально

возможное снижение дисперсии временных рядов координат пунктов. Имея «ровный» ряд, можно оценить косейсмические смещения по одному-двум отчетам до и после события, снижая искажения от постсейсмической деформации на результаты последующего моделирования. Уменьшение дисперсии ряда достигается уточнением начальных координат отсчетной основы (ОО) и стабилизацией положения сети в пространстве.

Пакету GAMIT для надежного разрешения неоднозначности целого числа циклов сигнала необходим хотя бы один пункт с текущими координатами, отличающимися не более чем на 5-10 см от начальных. ОО используемая для обработки многолетних наблюдений, не всегда отвечает этому требованию. На небольшом промежутке времени в 20-30 дней, можно существенно приблизить координаты ОО к наблюдаемым. Что позволяет снизить на два порядка допуски на возможные смещения, а, как следствие, уменьшить формальные ошибки и отклонения между ежесуточными определениями расстояний между пунктами сети. Для стабилизации положения сети в пространстве выполняется привязка сети к опорным пунктам, положение которых на рассматриваемом промежутке максимально постоянно. Землетрясение вызвало косейсмические подвижки на большинстве пунктах региональной сети. Использование их самих в качестве опорных приведет к смещенной оценке координат после землетрясения. Поэтому, в качестве опорных, использовались пункты сети IGS.

Полученные решения в виде ковариационных матриц и координат пунктов объединялись по общим пунктам с решениями для глобальной сети IGS и совместно уравнивались. По результатам совместной обработки формировалась уточненная ОО, выбирался постоянный на всем обрабатываемом промежутке набор опорных пунктов (207) и исключались грубые ошибки. Выполнялась повторная обработка с новой ОО с меньшими допусками. Невязки контрольного уравнивания сетей после повторной обработки составили порядка миллиметра.

Пункт	Определение по двум отчетам						Определение по разности линейных трендов					
	Косейс	мически	1e	Среднеквадратическое			Косейсмические			Среднеквадратическое		
	смещения, мм			отклонение, мм			смещения, мм			отклонение, мм		
	North	East	Up	±Ν	±Ε	±U	North	East	Up	±Ν	±Ε	±U
APCH	7	-11	-20	4	3	14	7	-11	-23	2	3	13
BRNG	1	-8	-2	2	2	8	2	-8	-4	1	1	6
BZ07	-1	-12	-11	3	2	8	0	-11	-14	2	2	5
KLUC	-2	-11	-9	3	2	9	-2	-10	-11	2	2	8
KMS1	-1	0	2	3	4	10	0	0	0	1	1	7
KMSH	9	-11	-19	3	2	12	7	-10	-25	2	3	15
KOZS	-1	-13	-21	4	3	15	-1	-12	-16	2	1	6
MAL1	8	-10	-20	4	3	16	6	-9	-21	2	1	6
MIL1	1	-12	-18	4	3	16	1	-12	-22	2	2	14
MYAK	5	-10	-19	3	3	11	5	-11	-17	2	2	11
PAUJ	9	-7	-19	3	3	10	9	-6	-15	2	3	10
PETR	7	-12	-18	4	4	12	6	-10	-16	2	1	6
PETS	7	-12	-16	2	2	9	6	-11	-13	1	1	6
RADZ	6	-13	-18	3	3	9	4	-10	-12	1	2	4
TIGS	-3	-6	-9	3	3	21	-3	-5	-8	1	1	5
UKAM	-1	-9	-9	4	3	12	-1	-10	-10	1	1	8
VODO	9	-7	-14	3	2	12	8	-8	-12	2	2	8
ZUPN	4	-13	-16	2	2	8	3	-13	-15	2	2	5
_ES1	-1	-11	-15	4	3	14	-1	-10	-13	1	1	6
_KBG	-1	-9	-5	3	2	8	0	-10	-5	1	2	6
TILI	-2	0	2	3	4	9	-1	-1	1	1	1	7
MAG0	1	-4	0	4	3	9	2	-3	0	3	3	8
YAKT	0	2	0	3	4	11	0	-1	0	1	3	6
YSSK	-1	0	1	2	2	8	0	-2	0	1	1	5

Таблица 1. Величины косейсмических смещений.

Для интерпретации использовались смещения в плане, определенные как разность одного отчета после и до события. Поскольку для данного землетрясения явных постсейсмических перемещений не наблюдается, то косейсмические смещения в плане при нахождении по одному отчету и по трендам за 10 дней (Таблица.1) мало отличаются. Значительны различия в вертикальных смещениях. Это объясняется худшей в 3-4 раза точностью определения вертикальных координат по

GNSS измерениям. Пока представляется предпочтительным нахождение вертикальных косейсмических смещений по расстоянию между трендами на рядах в 7-10 дней с обеих сторон от события.

Инверсия косейсмических смещений (горизонтальные компоненты)

При интерпретации мы полагали, что косейсмические смещения связаны с упругими движениями среды (упругая отдача). Это – реакция на разрыв и сопровождающую его подвижку, которые имели место в очаге.

Для интерпретации наблюдений нам нужна модель среды и модель очага, а также формулы для расчета модельных смещений.

В качестве модели среды взята простейшая – упругое полупространство. Первоначально полагали источник точечным – в гипоцентре. Рассчитывалась основная его характеристика, заключающая в себе механизм и скалярный сейсмический момент – тензор сейсмического момента с линейным условием: след равен нулю.

Затем в качестве модели использовали прямоугольную сдвиговую дислокацию. Последняя задается площадкой длины L (длинная сторона параллельна земной поверхности) и ширины W. Вдоль этой площадки имеется сдвиговое смещение **D**, постоянное по площадке. Центр площадки полагали совмещенным с гипоцентром. В обоих случаях гипоцентр – центроидом по каталогу GCMT.

Как в первом, так и во втором случае модельные смещения рассчитывались по формулам Окады [5].

Результаты расчетов

Инверсия в тензор сейсмического момента (TCM). Алгоритм инверсии такой же, как и для волновых форм [4] с очевидной модификацией. Полагали, что гипоцентр модельного источника совмещен с СМТ центроидом:

lat= 54.61° (широта), lon=153.77° (долгота), h=611 км (глубина).

В результате нашли 5 компонент тензора сейсмического момента **M** (TCM). Шестая компонента находится из условия нулевого следа:

 $M_{33} = -(M_{11} + M_{22}).$

По **M** определили *ближайший двойной диполь*. Для этого привели **M** к главным осям $\mathbf{e}_1 = \mathbf{e}_P$, $\mathbf{e}_2 = \mathbf{e}_T$, $\mathbf{e}_3 = \mathbf{e}_T$ (оси сжатия, нейтральная и растяжения соответственно) и нашли два варианта для векторов нормали и единичной подвижки

 $\mathbf{n} = (\mathbf{e}_{\rm P} + \mathbf{e}_{\rm T})/2^{1/2}, \ \mathbf{d} = (\mathbf{e}_{\rm P} - \mathbf{e}_{\rm T})/2^{1/2}.$

И оценку для скалярного сейсмического момента:

 $M_0 = (M_3 - M_1)/2,$

где M₁ ≤ M₂ ≤ M₃ – главные значения тензора М. Отличие тензора от двойного диполя без момента (ДДБМ) характеризуем параметром [4]:

 $\eta = 1.5 |M_2| / M_0 \cdot 100\%$.

Его значение равно нулю для ДДБМ тензора и единице для крайних случаев $M_1 = M_2$ и $M_2 = M_3$. Результаты сведены в Таблицу 2, где также приведены значения для СМТ тензора из каталога GCMT (<u>www.globalcmt.org</u>). На рисунке 2 показаны реальные (Таблица 1) и модельные векторы.

Инверсия в подвижку дислокации. Методика инверсии изложена в работе [3]. Для инверсии нужны азимут простирания и угол падения площадки очага, положение и глубина ее центра, а также длина L и ширина W. Оценка длины очага производится по площади S и отношению L/W. Площадь, в свою очередь, оценивается с помощью зависимости lg S[км²]=M_w-4.1 [2] (значение M_w – по Таблице

1). Положили, что $W=L=S^{1/2}$. В результате находим вектор подвижки **D**. Скалярный сейсмический момент M_0 и моментная магнитуда M_w выражаются по обычным формулам (см., например [1,2]):

 $M_0 = \mu S | \mathbf{D} |$, $M_w = 2/3 \cdot lg(M_0 [дин cm]) - 10.7$

Для значения модуля сдвига принята оценка μ =1.1·10¹¹ Hм⁻², полученная осреднением разреза, приведенного в [4]. В Таблице 3 приведены результаты расчетов подвижки для двух вариантов плоскости очага, полученных по результатам инверсии в TCM по GPS, а также по двум плоскостям механизма. Видим, что за счет того что станции находятся от очага на значительном расстоянии, выбор между возможными плоскостями очага сделать нельзя. Кроме того, GPS-механизм и CMT-механизм заметно различаются, хотя различие в остаточной невязке не превышает 15 %. Это говорит о практической не единственности решения задачи определения механизма по горизонтальным косейсмическим скачкам смещений. На Рисунке 3 приведен обзор возможных решений, для которых остаточная невязка не превышает минимальную более чем на 10%.

Таблица 2. Результаты инверсии го	ризонтальных косейсмических скачков	GSP в TCM	(СМТ для с	равнения)
-----------------------------------	-------------------------------------	-----------	------------	-----------

Тензор	Плоскость I az° dip ° slip°			Плоскость I I az° dip ° slip°			Mw	М0, в ед. 10 ²¹ Нм	η, %	E ₀ , %
GPS	65	59	-118	291	42	-52	8.47	5.77	28.6	19.61
CMT	12	79	-89	189	11	-93	8.36	3.95	13.6	22.56*)

⁹ Значение M_0 увеличено в 1.55 раза для наилучшего согласия (иначе $E_0=41$ %).

Рис. 2. Горизонтальные зарегистрированные (черные стрелки) и модельные (рассчитаны по параметрам **GPS** механизма, приведенного в Таблице 2 красные стрелки). Приведены GPS и CMT механизмы (в стереографической проекции нижней полусферы). Номера обозначаю GPS станции из приведенного ниже списка. Вектора для станции YSSK (23) приведены на врезке. Коды GPS станций: 1 -APCH, 2 - BRNG, 3 - BZ07, 4 - KLUC, 5 - KMS1, 6 -KMSH, 7 - KOZS, 8 - MAG0, 9 - MAL1, 10 - MIL1, 11 -MYAK, 12 – PAUJ, 13 – PETR, 14 – PETS, 15 – RADZ, 16 - TIGS, 17 - TILI, 18 -UKAM, 19 - VODO, 20 -ZUPN, 21 – _ES1, 22 – _KBG, 23 – YSSK.

Заключение

Для глубокого (611 км) землетрясения 21.05.2013 г., M_w 8.3 (СМТ) проведена интерпретация горизонтальных компонент косейсмических смещений, зарегистрированных Камчатской сетью GPS

станций. Проведена инверсия в тензор сейсмического момента (с нулевым следом), а также в подвижку для набора дислокаций, плоскости которых получаются перебором по азимуту простирания и углу падения. Наилучшее по минимуму невязки решение заметно отличается от решения, приведенного в глобальном каталоге СМТ механизмов. В то время как различие в значении остаточной невязки не превышает 15 %. Налицо практическая неоднозначность решения задачи определения механизма по горизонтальным косейсмическим скачкам GPS смещений.

Вариант	Плоско	ость дислокац	ции Σ	Поде	зижка D	Mw	М0, в ед. 10 ²¹	E ₀ , %
1	az°	dip °	L ^{*)} , км	D, см	slip°		Нм	
GPS, I	65	59	153	247	-118	8.50	6.35	19.92
GPS, II	291	41	153	248	-53	8.50	6.40	19.82
CMT, I	12	79	135	321	-84	8.51	6.43	22.23
CMT, II	189	11	135	327	-100	8.51	6.55	22.27

Таблица 3. Результаты инверсии горизонтальных косейсмических скачков GSP в подвижку дислокации

^{*)} Оценки L со значением Mw по Таблице 2.

Рис. 3. Решения для инверсии в подвижку дислокации полученные перебором по азимуту простирания аз (шаг 10°) и углу падения dip (шаг 5°). Приведена кривая остаточной невязки (1) в зависимости от dip; получена минимизацией невязки по аz при фиксированном dip (2). Указан интервал лля невязки. включающий значения не превышающие 110% от минимума. Механизмы даны в стереографической проекции нижней полусферы.

Список литературы

1. Аки К., Ричардс П. Количественная сейсмология. Т.1. М: Мир, 1983. 520 с.

2. Гусев А.А., Мельникова В.Н. Связи между магнитудами – среднемировые и для Камчатки. // Вулканология и сейсмология. 1990. № 6. С. 55-63.

3. Левин В.Е., Бахтиаров В.Ф., Павлов В.М., Титков Н.Н., Сероветников С.С. Геодинамические исследования Олюторского землетрясения 20(21) 04.2006 по данным камчатской GPS сети. // Вулканология и сейсмология. 2010. № 3. С. 50-59.

4. Павлов В.М., Абубакиров И.Р. Алгоритм расчета тензора сейсмического момента сильных землетрясений по региональным широкополосным сейсмограммам объемных волн. // Вестник краунц. Науки о земле. 2012. № 2. Выпуск № 20. С. 149-158.

5. Okada Y. Surface deformation due to shear and tesile faults in a half-space/ // BSSA. 1985. V. 75. No. 4. P. 1135-1154.